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Abstract. Let k be an algebraically closed field, l ̸= char k a prime number, and X a quasi-

projective scheme over k. We show that the étale homotopy type of the dth symmetric power

of X is Z/l-homologically equivalent to the dth strict symmetric power of the étale homotopy
type of X. We deduce that the Z/l-local étale homotopy type of a motivic Eilenberg–Mac

Lane space is an ordinary Eilenberg–Mac Lane space.
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Introduction

In the first part of this paper we show that the étale homotopy type of the dth symmetric power
of a quasi-projective scheme X over a separably closed field k is Z/l-homologically equivalent
to the dth symmetric power of the étale homotopy type of X, where l ̸= char k is any prime.
Symbolically,

(∗) LZ/lΠ
ét
∞(SdX) ≃ LZ/lS

dΠét
∞(X),

where Πét
∞ is the étale homotopy type, Sd is the dth symmetric power (more precisely the strict

symmetric power), and LZ/l is Z/l-localization à la Bousfield–Kan. The étale homotopy type

Πét
∞X of a scheme X is a pro-space originally defined by Artin and Mazur [AM69] and later

refined by Friedlander [Fri82]. It is characterized by the property that the (nonabelian) étale
cohomology of X with constant coefficients coincides with the cohomology of Πét

∞X.
The formula (∗) is related to a theorem of Deligne about the étale cohomology of symmetric

powers [SGA4, XVII, Théorème 5.5.21], but there are three significant differences:

(1) Deligne’s theorem is about cohomology with proper support, and so does not say anything
about the cohomology of non-proper schemes.

(2) We give an equivalence at the level of homotopy types, whereas Deligne only gives an
equivalence at the level of cochains.

(3) Deligne’s theorem works over an arbitrary quasi-compact quasi-separated base and with
arbitrary Noetherian torsion coefficients; for our result the base must be a separably
closed field whose characteristic is prime to the torsion of the coefficients.
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While there may be a relative version of (∗) over a base, the localization away from the residual
characteristics cannot be avoided when dealing with non-proper schemes.

In his proof, after reducing to the case where the base is a field k, Deligne employs Witt vectors
to further reduce to the case where k has characteristic zero (concluding with a transcendental
argument). In this step it is crucial that X be proper over k. Our arguments are thus necessarily
quite different. We use the existence a schematic topology, finer than the étale topology but
cohomologically equivalent to it, for which the quotient map Xd → SdX is a covering; this is the
qfh topology used extensively by Voevodsky in his work on triangulated categories of motives.

Combining (∗) with the motivic Dold–Thom theorem, we show that if k is algebraically closed
and A is an abelian group on which the characteristic exponent of k acts invertibly, then the
Z/l-local étale homotopy type of a motivic Eilenberg–Mac Lane space K(A(q), p) is the Z/l-
localization of an ordinary Eilenberg–Mac Lane space K(A, p).

Conventions. Throughout this paper, we use the language of ∞-categories developed in [HTT]
and [HA]. Although our main results can be stated in more classical language, their proofs use
the flexibility of higher category theory in an essential way. We warn the reader that this is
the default language in this paper, so for example the word “colimit” always means “homotopy
colimit”, “unique” means “unique up to a contractible space of choices”, etc. We will use the
following notation:

• S is the ∞-category of small ∞-groupoids, which we also call spaces;
• Set∆ is the category of simplicial sets;
• Top∞ is the ∞-category of ∞-topoi and geometric morphisms [HTT, §6.3];
• C≤n is the subcategory of n-truncated objects in an ∞-category C;
• Cω is the subcategory of compact objects in an ∞-category C with filtered colimits;
• hC is the homotopy 1-category of an ∞-category C;
• X∧ is the hypercompletion of an ∞-topos X [HTT, §6.5.2].

Historical note. The first draft of this paper was written in 2011 as a step towards the com-
putation of the motivic Steenrod algebra in positive characteristic. Afterwards I realized that
the technology of étale homotopy types could be avoided completely using the Bloch–Kato con-
jecture, which was the approach taken in [HKØ17]. Since I had no other application in mind I
did not attempt to turn this draft into a publishable paper. More recently however, the main
result of this paper was used by Zargar in [Zar19] to compute the weight 0 homotopy groups
of the motivic sphere spectrum in positive characteristic. Given this new application, it seemed
important that this paper be published after all. I want to thank Chuck Weibel for encouraging
me to finally take this paper out of its draft state.

1. Homotopy types of schemes

Let τ be a pretopology on the category of schemes (in the sense of [SGA4, II, Définition 1.3]).
If X is a scheme, the small τ -site of X is the full subcategory of SchX spanned by the members
of the τ -coverings of X and equipped with the Grothendieck topology induced by τ (we assume
that this is an essentially small category). We denote by Xτ the ∞-topos of sheaves of spaces on
the small τ -site of X. The assignment X 7→ Xτ is functorial: a morphism of schemes f : X → Y
induces a geometric morphism of ∞-topoi f∗ : Xτ → Yτ given by f∗(F)(U) = F(U ×Y X).

Recall that the functor S → Top∞ associating to an ∞-groupoid its classifying ∞-topos
admits a pro-left adjoint Π∞ : Top∞ → Pro(S) associating to any ∞-topos its shape (see [HTT,
§7.1.6] or [Hoy18]). The τ -homotopy type Πτ

∞X of a scheme X is the shape of the ∞-topos Xτ :

Πτ
∞X = Π∞(Xτ ).

This construction defines a functor Πτ
∞ : Sch → Pro(S).

Let X be an ∞-topos and let c : S → X be the constant sheaf functor. By definition of
the shape, we have MapX(∗, cK) ≃ MapPro(S)(Π∞X,K) for every K ∈ S. In particular, the
cohomology of X with coefficients in an abelian group can be computed as the continuous
cohomology of the pro-space Π∞X. If X is locally connected (i.e., if for every X ∈ X the pro-set
π0Π∞(X/X) is constant), we have more generally that the category Fun(Π∞X, Set) of discrete
local systems on Π∞X is equivalent to the category of locally constant sheaves of sets on X
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[Hoy18, Theorem 3.13], and, if A is such a sheaf of abelian groups, then H∗(X,A) coincides with
the continuous cohomology of the pro-space Π∞X with coefficients in the corresponding local
system [Hoy18, Proposition 2.15].

Remark 1.1. In the definition of Πτ
∞X, we could have used any τ -site of X-schemes containing

the small one. For if X ′
τ is the resulting ∞-topos of sheaves, the canonical geometric morphism

Xτ → X ′
τ is obviously a shape equivalence. It follows that the functor Πτ

∞ depends only on the
Grothendieck topology induced by τ .

Remark 1.2. For schemes over a fixed base scheme S, we can define in the same way a relative
version of the τ -homotopy type functor taking values in the ∞-category Pro(Sτ ).

Remark 1.3. Let X∧
τ be the hypercompletion of Xτ . By the generalized Verdier hypercovering

theorem [DHI04, Theorem 7.6(b)], Π∞(X∧
τ ) is corepresented by the simplicially enriched diagram

Π0 : HCτ (X) → Set∆ where HCτ (X) is the cofiltered simplicial category of τ -hypercovers of X
and Π0(U•) is the simplicial set that has in degree n the colimit of the presheaf Un. See [Hoy18,
§5] for details.

Remark 1.4. When τ = ét is the étale pretopology and X is locally Noetherian, Π∞(X∧
ét) is

corepresented by the étale topological type defined by Friedlander in [Fri82, §4]. This follows
easily from Remark 1.3.

Lemma 1.5. Let U be a diagram in the small τ -site of a scheme X whose colimit in Xτ is X.
Then Πτ

∞X is the colimit of the diagram of pro-spaces Πτ
∞U .

Proof. By [HTT, Proposition 6.3.5.14], the ∞-topos Xτ is the colimit in Top∞ of the diagram
of ∞-topoi Uτ . Since Π∞ : Top∞ → Pro(S) is left adjoint, it preserves this colimit. □

Remark 1.6. Similarly, if U• → X is a representable τ -hypercover of X, then it is a colimit
diagram in X∧

τ , so that Π∞(X∧
τ ) is the colimit of the simplicial pro-space Π∞((U•)

∧
τ ). The

trivial proof of this fact can be compared with the rather technical proof of [Isa04a, Theorem
3.4], which is the special case τ = ét. This is a good example of the usefulness of the topos-
theoretic definition of the shape.

2. Strict symmetric powers in ∞-categories

If X is a CW complex, its dth symmetric power SdX is the set of orbits of the action of the
symmetric group Σd on Xd, endowed with the quotient topology. Even though the action of
Σd on Xd is not free, it is well known that the homotopy type of SdX is an invariant of the
homotopy type of X. More generally, if G is a group acting on a CW complex X, the orbit
space X/G can be written as the homotopy colimit

(2.1) X/G ≃ hocolim
H∈O(G)op

XH ,

where O(G) is the orbit category of G (whose objects are the subgroups of G and whose mor-
phisms are theG-equivariant maps between the corresponding quotients) andXH is the subspace
of H-fixed points [Far96, Chapter 4, Lemma A.3]. In the case of the symmetric group Σd acting
on Xd, if H is a subgroup of Σd, then (Xd)H ≃ Xo(H) where o(H) is the set of orbits of the
action of H on {1, . . . , d} and where the factor of Xo(H) indexed by an orbit {i1, . . . , ir} is sent
diagonally into the corresponding r factors of Xd. The formula (2.1) becomes

SdX ≃ hocolim
H∈O(Σd)op

Xo(H).

This shows that Sd preserves homotopy equivalences between CW complexes. In particular, it
induces a functor Sd from the ∞-category of spaces to itself.

This motivates the following definition:

Definition 2.2. Let C be an ∞-category with colimits and finite products and d ≥ 0 an integer.
The dth strict symmetric power of X ∈ C is

SdX = colim
H∈O(Σd)op

Xo(H).
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We will relate strict symmetric powers to the notion of strictly commutative monoid in §7.
Note that S0X is a final object of C and that S1X ≃ X. For example, in an∞-category of sheaves
of spaces on a site, Sd is computed by applying Sd objectwise and sheafifying the result, and
in a 1-category it is the usual symmetric power, namely the coequalizer of the action groupoid
Σd×Xd ⇒ Xd. We note that any functor that preserves colimits and finite products commutes
with Sd.

Remark 2.3. If the product in C preserves sifted colimits in each variable (for example, if C
is cartesian closed or projectively generated), it follows from [HTT, Lemma 5.5.8.11] that the
functor Sd : C → C preserves sifted colimits. In particular, Sd : S → S is the left Kan extension
of the functor Sd : Fin → Fin, where Fin is the category of finite sets.

Remark 2.4. More generally, one has a strict symmetric power SϕX for any group homomor-
phism ϕ : G → Σd:

SϕX = colim
H∈O(G)op

Xo(H).

Lemma 2.5. Let X be an ∞-topos. Then the inclusion X≤0 ↪→ X of the subcategory of discrete
objects preserves strict symmetric powers.

Proof. This is true if X = S since symmetric powers preserve discrete CW complexes, hence if X
is a presheaf ∞-topos. It remains to observe that if a : X → Y is a left exact localization and the
result is true in X, then it is true in Y: this follows from the fact that a preserves 0-truncated
objects [HTT, Proposition 5.5.6.16]. □

3. Homological localizations of pro-spaces

Let Pro(S) denote the ∞-category of pro-spaces. Recall that this is the ∞-category freely gen-
erated by S under cofiltered limits and that it is equivalent to the full subcategory of Fun(S, S)op

spanned by accessible left exact functors [DAG13, Proposition 3.1.6]. Any such functor is equiv-
alent to Y 7→ colimi∈I Map(Xi, Y ) for some small cofiltered diagram X : I → S. Moreover,
combining [HTT, Proposition 5.3.1.16] and the proof of [SGA4, Proposition 8.1.6], we can al-
ways find such a corepresentation where I is a cofiltered poset such that, for each i ∈ I, there
are only finitely many j with i ≤ j; such a poset is called cofinite.

In [Isa04b], Isaksen constructs a proper model structure on the category Pro(Set∆) of pro-
simplicial sets, called the strict model structure, with the following properties:

• a pro-simplicial set X is fibrant if and only if it is isomorphic to a diagram (Xs)s∈I such
that I is a cofinite cofiltered poset and Xs → lims<t Xt is a Kan fibration for all s ∈ I;

• the inclusion Set∆ ↪→ Pro(Set∆) is a left Quillen functor;
• it is a simplicial model structure with simplicial mapping sets defined by

Map∆(X,Y ) = Hom(X ×∆•, Y ).

Denote by Pro′(S) the ∞-category associated to this model category, and by c : S → Pro′(S) the
left derived functor of the inclusion Set∆ ↪→ Pro(Set∆). Since Pro′(S) admits cofiltered limits,
there is a unique functor ϕ : Pro(S) → Pro′(S) that preserves cofiltered limits and such that
ϕ ◦ j ≃ c, where j : S ↪→ Pro(S) is the Yoneda embedding.

Lemma 3.1. ϕ : Pro(S) → Pro′(S) is an equivalence of ∞-categories.

Proof. Let X ∈ Pro(Set∆) be fibrant. Then X is isomorphic to a diagram (Xs) indexed by a
cofinite cofiltered poset and such that Xs → lims<t Xt is a Kan fibration for all s, and so, for
all Z ∈ Pro(Set∆), Map∆(Z,Xs) → lims<t Map∆(Z,Xt) is a Kan fibration. It follows that the
limit Map∆(Z,X) ≃ lims Map∆(Z,Xs) in Set∆ is in fact a limit in S, so that X ≃ lims c(Xs) in
Pro′(S). This shows that ϕ is essentially surjective.

Let X ∈ Pro(S) and choose a corepresentation X : I → S where I is a cofinite cofiltered poset.
Using the model structure on Set∆, X can be strictified to a diagram X ′ : I → Set∆ such that
X ′

s → lims<t X
′
t is a Kan fibration for all s ∈ I. By the first part of the proof, we then have

X ′ ≃ lims c(X
′
s) in Pro′(S), whence ϕX ≃ X ′. Given also Y ∈ Pro(S), we have

Map(X ′, Y ′) ≃ lim
t

Map(X ′, cY ′
t ) ≃ holim

t
Map∆(X

′, Y ′
t ) ≃ lim

t
colim

s
Map(X ′

s, Y
′
t ),
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where in the last step we used that filtered colimits of simplicial sets are always colimits in S.
This shows that ϕ is fully faithful. □

Let S<∞ ⊂ S be the ∞-category of truncated spaces. A pro-truncated space is a pro-object
in S<∞. It is clear that the full embedding Pro(S<∞) ↪→ Pro(S) admits a left adjoint

τ<∞ : Pro(S) → Pro(S<∞)

that preserves cofiltered limits and sends a constant pro-space to its Postnikov tower; it also
preserves finite products since truncations do. The τ<∞-equivalences in Pro(S≥1

∗ ) are precisely

those maps that become ♮-isomorphisms in Pro(hS≥1
∗ ) in the sense of Artin and Mazur [AM69,

Definition 4.2].

Remark 3.2. The model structure on Pro(Set∆) defined in [Isa01] is the left Bousfield local-
ization of the strict model structure at the class of τ<∞-equivalences. It is therefore a model for
the ∞-category Pro(S<∞) of pro-truncated spaces.

Let R be a commutative ring. A morphism f : X → Y in Pro(S) is called an R-homological
equivalence (resp. an R-cohomological equivalence) if it induces an equivalence of homology pro-
groups H∗(X,R) ≃ H∗(Y,R) (resp. an equivalence of cohomology groups H∗(Y,R) ≃ H∗(X,R)).
By [Isa05, Proposition 5.5], f is an R-homological equivalence if and only if it induces isomor-
phisms in cohomology with coefficients in arbitrary R-modules. A pro-spaceX is called R-local if
it is local with respect to the class of R-homological equivalences, i.e., if for every R-homological
equivalence Y → Z the induced map Map(Z,X) → Map(Y,X) is an equivalence in S. A pro-
space is called R-profinite1 if it is local with respect to the class of R-cohomological equivalences.
We denote by Pro(S)R (resp. Pro(S)R) the ∞-category of R-local (resp. R-profinite) pro-spaces.

The characterization of R-homological equivalences in terms of cohomology shows that any
τ<∞-equivalence is an R-homological equivalence. We thus have a chain of full embeddings

Pro(S)R ⊂ Pro(S)R ⊂ Pro(S<∞) ⊂ Pro(S).

Proposition 3.3. The inclusions Pro(S)R ⊂ Pro(S) and Pro(S)R ⊂ Pro(S) admit left adjoints
LR and LR. Moreover, LR preserves finite products.

Proof. The existence of the localization functors LR and LR follows from Lemma 3.1 and the ex-
istence of the corresponding left Bousfield localizations of the strict model structure on Pro(Set∆)
[Isa05, Theorems 6.3 and 6.7]. We also give a self-contained proof in Proposition 3.7 below. For
the last statement, we must show that the canonical map

LR(X × Y ) → LR(X)× LR(Y )

is an equivalence for all X,Y ∈ Pro(S). Since both sides are R-local, it suffices to show that
this map an R-homological equivalence. By definition of LR, the canonical map C∗(X,R) →
C∗(LRX,R) induces an isomorphism on homology pro-groups. Since C∗(−, R) : S → D(R)≥0 is
a symmetric monoidal functor, we have a natural equivalence

C∗(X × Y,R) ≃ C∗(X,R)⊗R C∗(Y,R)

in the ∞-category Pro(D(R)≥0). Since C∗(X,R) → C∗(LR(X), R) is a pro-homology isomor-
phism by definition of LR, it remains to show that the tensor product in Pro(D(R)≥0) preserves
pro-homology isomorphisms. A morphism in Pro(D(R)≥0) is a pro-homology isomorphism if and
only if it induces an equivalence on n-truncations for all n, so the claim follows from the fact that
the canonical map M ⊗RN → τ≤nM ⊗R τ≤nN is a τ≤n-equivalence for all M,N ∈ D(R)≥0. □

The fact that LR preserves finite products is very useful and we will use it often. It implies in
particular that LR preserves commutative monoids and commutes with the formation of strict
symmetric powers. Here is another consequence:

Corollary 3.4. Finite products distribute over finite colimits in Pro(S)R.

Proof. Finite colimits are universal in Pro(S), i.e., are preserved by any base change (since
pushouts and pullbacks can be computed levelwise). The result follows using that LR preserves
finite products. □

1This terminology is motivated by the case R = Z/l, see Remark 3.8.
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Remark 3.5. Let X be an ∞-topos and let X∧ be its hypercompletion. The geometric mor-
phism X∧ → X induces an equivalence of pro-truncated shapes (since truncated objects are
hypercomplete [HTT, Lemma 6.5.2.9]), and a fortiori also of R-local and R-profinite shapes for
any commutative ring R.

Remark 3.6. Let l be a prime number. The Bockstein long exact sequences show that any Z/l-
cohomological equivalence is also a Z/ln-cohomological equivalence for all n ≥ 1. In particular,
if X is an ∞-topos, its Z/l-profinite shape LZ/lΠ∞X remembers the cohomology of X with l-adic
coefficients.

As shown in [Isa05, Proposition 7.3], if R is solid (e.g., R = Z/n for some integer n) and
X ∈ S is connected, then LRX is the pro-truncation of the Bousfield–Kan R-tower of X [BK72,
I, §4]. It follows that the limit of the pro-space LRX is the Bousfield–Kan R-completion R∞X.

The existence of the localization functors LR and LR is a special case of a more general result
which we now formulate. If C is any locally small ∞-category, Pro(C)op is the full subcategory of
Fun(C, S) spanned by small filtered colimits of corepresentable functors [HTT, Remark 5.3.5.9].
If K is any collection of objects of C, a morphism X → Y in Pro(C) is called a K-equivalence if
it induces equivalences Map(Y,K) ≃ Map(X,K) for every K ∈ K, and an object Z ∈ Pro(C) is
called K-local if every K-equivalence X → Y induces an equivalence Map(Y,Z) ≃ Map(X,Z).
Note that K-equivalences are preserved by cofiltered limits, since K ⊂ C and the objects of C
are cocompact in Pro(C). We denote by

Pro(C)K ⊂ Pro(C)

the full subcategory of K-local objects.

Proposition 3.7. Let C be a presentable ∞-category and K a collection of objects of C. Suppose
that K is the essential image of an accessible functor. Then the inclusion Pro(C)K ⊂ Pro(C)

admits a left adjoint. Moreover, Pro(C)K = Pro(K̂) where K̂ ⊂ C is the closure of K under finite
limits.

Proof. With no assumptions onK, there is an obvious inclusion Pro(K̂) ⊂ Pro(S)K. IfK is small,

then every functor K̂ → S is a small colimit of corepresentables, so the inclusion Pro(K̂) ⊂ Pro(C)

has a left adjoint L given by restricting a functor C → S to K̂. IfX ∈ Pro(C)K, then the canonical
mapX → LX is aK-equivalence betweenK-local objects, hence it is an equivalence. This proves
the proposition when K is small.

The proof of the general case follows [Isa05, Proposition 6.10]. For any X ∈ Pro(C), we must
construct a K-equivalence X → Y where Y is K-local. Suppose that K is the essential image of a
functor ϕ : L → C that preserves κ-filtered colimits, where C and L are κ-accessible. For λ ≫ κ,
let Kλ = ϕ(Lλ) where Lλ ⊂ L is the subcategory of λ-compact objects. Choose λ0 ≫ κ such
that X is a cofiltered limit of λ0-compact objects of C, and let X → Y0 be the Kλ0 -localization
of X. Inductively, choose λn ≫ λn−1 such that Yn−1 is a cofiltered limit of λn-compact objects,
and let X → Yn be the Kλn -localization of X. Finally, let Y = limn Yn. Then Y is K-local, and
it remains to show that the induced map X → Y is a K-equivalence.

Let K ∈ K be the image of L ∈ L. For any n ≥ 0, let Ln be the λn-filtered ∞-category
(Lλn)/L. Since ϕ preserves λn-filtered colimits,K is the colimit of ϕ|Ln for any n. The conclusion
now follows by evaluating the colimit

colim
m,n

colim
A∈Ln

Map(Ym, ϕ(A))

in two ways. Setting m = n, we have

colim
n

colim
A∈Ln

Map(Yn, ϕ(A)) ≃ colim
n

colim
A∈Ln

Map(X,ϕ(A)) ≃ Map(X,K),

since X → Yn is a Kλn -equivalence and X is a cofiltered limit of λn-compact objects for any n.
Setting m = n− 1, we have

colim
n

colim
A∈Ln

Map(Yn−1, ϕ(A)) ≃ colim
n

Map(Yn−1,K) ≃ Map(Y,K),

since Yn−1 is a cofiltered limit of λn-compact objects. This concludes the proof of the existence
of the left adjoint. By construction, Y is in fact Kλ-local for any large enough λ ≫ κ, so we
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have also proved that

Pro(C)K =
⋃
λ≫κ

Pro(C)Kλ .

This implies that Pro(C)K ⊂ Pro(K̂), since we already know it when K is small. □

Proposition 3.7 applies in particular whenever K is small. For example, if K is the collection
of Eilenberg–Mac Lane spaces K(R,n) with n ≥ 0, then Pro(S)K = Pro(S)R. Proposition 3.7
also applies with K the collection of Eilenberg–Mac Lane spaces K(M,n) for M any R-module
and n ≥ 0, this being the image of a filtered-colimit-preserving functor from a countable disjoint
union of copies of the category of R-modules. In this case, Pro(S)K = Pro(S)R.

Remark 3.8. If l is a prime number, the spaces that can be obtained from the Eilenberg–Mac
Lane spaces K(Z/l, n) using finite limits are precisely the truncated spaces with finite π0 and
whose homotopy groups are finite l-groups. Hence, Pro(S)Z/l coincides with the ∞-category of
l-profinite spaces studied in [DAG13, §3].

Lemma 3.9. Let C be a presentable ∞-category, let (Kα)α be a small filtered diagram of collec-
tions of objects of C satisfying the assumption of Proposition 3.7, and let K =

⋃
α Kα. Then the

localization functors induce an equivalence

Pro(C)K ≃ lim
α

Pro(C)Kα .

Proof. Note that K also satisfies the assumption of Proposition 3.7, so that Pro(C)K = Pro(K̂).

Since K̂ = colimα K̂α, we have an equivalence

Fun(K̂, S) ≃ lim
α

Fun(K̂α, S),

which implies that the functor Pro(C)K → limα Pro(C)Kα
is fully faithful. It remains to show

that a functor F : K̂ → S is a small filtered colimit of corepresentables if each of its restrictions

F |K̂α is. This is true since F ≃ colimα Fα where Fα is the left Kan extension of F |K̂α to K̂. □

For n ≥ 0, we define Pro(S≤n)R to be the subcategory of K-local objects in Pro(S) where K

is the collection of Eilenberg–Mac Lane spaces K(M, i) with M an R-module and 0 ≤ i ≤ n.
Since K consists of n-truncated R-local objects, we have2

Pro(S≤n)R ⊂ Pro(S≤n) ∩ Pro(S)R.

By Proposition 3.7, the inclusion Pro(S≤n)R ⊂ Pro(S) admits a left adjoint LR,≤n. We de-
fine Pro(S≤n)

R and the localization functor LR
≤n similarly (using only the R-module R). By

Lemma 3.9, the localization functors LR,≤n induce an equivalence

(3.10) Pro(S)R ≃ lim
n

Pro(S≤n)R

and similarly for Pro(S)R.
The following proposition shows that the localizations LR and LR agree in many cases of

interest, partially answering [Isa05, Question 11.2].

Proposition 3.11. Let F be a prime field and let X be a pro-space whose F -homology pro-
groups are pro-finite-dimensional vector spaces. Then LFX is F -profinite. In other words, the
canonical map LFX → LFX is an equivalence.

Proof. First we claim that any F -profinite pro-space with profinite π0 satisfies the given con-
dition on X. Such a pro-space is a cofiltered limit of spaces with finite π0 that are obtained
from K(F, n)’s using finite limits. By [BK72, Proposition 5.3], each connected component of
such a space is obtained from the point by a finite sequence of principal fibrations with fibers
K(F, n) with n ≥ 1. Using Eilenberg–Moore [DAG13, Corollary 1.1.10], it thus suffices to show
that Hm(K(F, n), F ) is finite-dimensional for every m ≥ 0 and n ≥ 1, which is a well-known
computation. Thus, both X and LFX have pro-finite-dimensional F -homology pro-groups. It
follows that the canonical map X → LFX induces an isomorphism on F -cohomology ind-groups,
whence on F -homology pro-groups. □

2Beware that this inclusion is strict for n ≥ 1. In particular, Pro(S≤n)R is not the subcategory of n-truncated

objects in Pro(S)R.
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Remark 3.12. It is clear that the class of pro-spaces X satisfying the hypothesis of Proposi-
tion 3.11 is preserved by LF , retracts, finite products, and finite colimits (it suffices to verify
the latter for pushouts).

Proposition 3.13. Let F be a prime field and let X be a pro-space whose F -homology pro-groups
in degrees ≤ n are pro-finite-dimensional vector spaces. Then the canonical map LF,≤nX →
LF
≤nX is an equivalence. Furthermore, LF,≤n preserves finite products of such pro-spaces.

Proof. As in the proof of Proposition 3.11, LF
≤nX has pro-finite-dimensional F -homology pro-

groups, hence the canonical map X → LF
≤nX induces an isomorphism on F -cohomology ind-

groups in degrees ≤ n. Since these groups are finite-dimensional F -vector spaces, this remains
true for cohomology with coefficients in any F -vector space, which implies the first statement.
For the second statement, we must show that the canonical map

X × Y → LF
≤nX × LF

≤nY

induces an isomorphism on F -cohomology in degrees ≤ n. Since F is a field, we have an
isomorphism of graded pro-vector spaces H∗(X × Y, F ) ≃ H∗(X,F ) ⊗F H∗(Y, F ), which are
pro-finite-dimensional in degrees ≤ n. Dualizing and taking the colimit, we find that

Hm(X × Y, F ) ≃
⊕

r+s=m

Hr(X,F )⊗Hs(Y, F )

for any m ≤ n. The same formula applies to LF
≤nX and LF

≤nY . By definition of LF
≤n, we have

Hm(X,F ) ≃ Hm(LF
≤nX,F ) for all m ≤ n and similarly for Y , so we are done. □

4. The h and qfh topologies

Let X be a Noetherian scheme. An h covering of X is a finite family {Ui → X} of morphisms
of finite type such that the induced morphism

∐
i Ui → X is universally submersive (a morphism

of schemes f : Y → X is submersive if it is surjective and if the underlying topological space of
X has the quotient topology). If in addition each Ui → X is quasi-finite, it is a qfh covering.
These notions of coverings define pretopologies on Noetherian schemes which we denote by h
and qfh, respectively. The h and qfh topologies are both finer than the fppf topology, and they
are not subcanonical.

Proposition 4.1. Let X be a Noetherian scheme.

(1) The canonical map Πqfh
∞ X → Πét

∞X induces an isomorphism in cohomology with any
local system of abelian coefficients. In particular, for any commutative ring R,

LRΠ
qfh
∞ X ≃ LRΠ

ét
∞X.

(2) If X is excellent, the canonical map Πh
∞X → Πqfh

∞ X induces an isomorphism in co-
homology with any local system of torsion abelian coefficients. In particular, for any
torsion commutative ring R,

LRΠ
h
∞X ≃ LRΠ

qfh
∞ X.

Proof. Recall that the cohomology of Π∞X with coefficients in a local system coincides with
the cohomology of X with coefficients in the associated locally constant sheaf (see §1). The
first statements are thus translations of [Voe96, Theorem 3.4.4] and [Voe96, Theorem 3.4.5],
respectively (the excellence of X is a standing assumption in loc. cit., but it is not used in the
proof of (1); see also [SV96, §10] for self-contained proofs). The statements about the R-local
shapes follow immediately, since LR inverts morphisms that induce isomorphisms in cohomology
with coefficients in any R-module (see §3). □

Remark 4.2. Voevodsky’s proof also shows that H1
ét(X,G) ≃ H1

qfh(X,G) for any locally con-

stant étale sheaf of groups G. It follows from [Isa01, Proposition 18.4] (and Remark 3.2) that
Πqfh

∞ X → Πét
∞X is in fact a τ<∞-equivalence.

For C a small ∞-category, we denote by r : C ↪→ PSh(C) the Yoneda embedding, and if τ is a
topology on C, we denote by rτ = aτr the τ -sheafified Yoneda embedding.
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Lemma 4.3. Let S be a Noetherian scheme and let τ ∈ {h, qfh, ét}. Then, for any n ≥ 0, the

image of the Yoneda functor rτ : Sch
ft
S → Shvτ (Sch

ft
S )≤n consists of compact objects.

Proof. The category SchftS has finite limits and the topology τ is finitary, and so the ∞-topos

Shvτ (Sch
ft
S ) is locally coherent and coherent. The result now follows from [DAG13, Corollary

2.3.10(1)]. □

The advantage of the qfh topology over the étale topology is that it can often cover singular
schemes by smooth schemes. Let us make this explicit in the case of quotients of smooth schemes
by finite group actions. We first recall the classical existence result for such quotients.

A groupoid scheme X• is a simplicial scheme such that, for every scheme Y , Hom(Y,X•) is
a groupoid. If P is any property of morphisms of schemes that is stable under base change, we
say that X• has property P if every face map in X• has property P (of course, it suffices that
d0 : X1 → X0 have property P ).

Lemma 4.4. Let S be a scheme and let X• be a finite and locally free groupoid scheme over
S. Suppose that for any x ∈ X0, d1(d

−1
0 (x)) is contained in an affine open subset of X0 (for

example, X0 is quasi-projective over S). Then X• has a colimiting cone p : X• → Y in the
category of S-schemes. Moreover,

(1) p is integral and surjective, and in particular universally submersive;
(2) the canonical morphism X• → cosk0(p) is degreewise surjective;
(3) if S is locally Noetherian and X0 is of finite type over S, then Y is of finite type over S.

Proof. The claim in parentheses follows from [EGA2, Corollaire 4.5.4] and the definition of
quasi-projective morphism [EGA2, Définition 5.3.1]. An integral and surjective morphism is
universally submersive because integral morphisms are closed [EGA2, Proposition 6.1.10]. The
existence of p which is integral and surjective and (2) are proved in [DG70, III, §2, 3.2] or [SGA3,
V, Théorème 4.1]. Part (3) is proved in [SGA3, V, Lemme 6.1(ii)]. □

Proposition 4.5. Let S be a Noetherian scheme and X• a groupoid scheme of finite type over
S as in Lemma 4.4 with colimit Y . Then rqfhX• → rqfhY is a colimiting cone in Shvqfh(Sch

ft
S ).

Proof. By Lemma 4.4, the colimiting cone X• → Y is a qfh hypercover, and it is 2-coskeletal
since X• is a groupoid scheme. Hence, if F is a qfh sheaf, we have F(Y ) ≃ limF(X•) by [HTT,
Lemma 6.5.3.9]. □

Corollary 4.6. Let S be a Noetherian scheme and X a quasi-projective S-scheme. Then the
Yoneda functor rqfh : Sch

ft
S → Shvqfh(Sch

ft
S ) preserves strict symmetric powers of X, i.e., it sends

the schematic symmetric power SdX to the sheafy symmetric power SdrqfhX.

Proof. Since the strict symmetric power is the usual symmetric power in a 1-category, we have
rqfhS

dX ≃ SdrqfhX in Shvqfh(Sch
ft
S )≤0 by Proposition 4.5, whence in Shvqfh(Sch

ft
S ) by Lemma 2.5.

□

Proposition 4.7. Let k be a perfect field and i : C ↪→ Schftk the inclusion of a full subcategory

such that every smooth k-scheme is Zariski-locally in C. Let i∗ : PSh(Schftk ) → PSh(C) be the

restriction functor and let i! be its left adjoint. For every F ∈ PSh(Schftk ), the counit morphism
i!i

∗F → F is an a∧h -equivalence.

Proof. By a well-known theorem of de Jong [dJ96, Theorem 4.1], every scheme of finite type
over a perfect field k is h-locally smooth, hence is h-locally in C. It follows that there is an
induced h topology on C whose covering sieves are the restrictions of h-covering sieves in Schftk ,

or equivalently those sieves that generate an h-covering sieve in Schftk . By the comparison
lemma [SGA4, III, Théorème 4.1], the restriction functor i∗ and its right adjoint i∗ restrict to
an equivalence between the subcategories of h sheaves of sets, hence between the ∞-categories
of hypercomplete h sheaves (since they are the hypercompletions of the associated 1-localic
∞-topoi). □
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5. The étale homotopy type of symmetric powers

Proposition 5.1. Let k be a separably closed field, l ̸= char k a prime number, and X and Y
schemes of finite type over k. Let τ ∈ {h, qfh, ét}. Then

LZ/lΠ
τ
∞(X ×k Y ) ≃ LZ/lΠ

τ
∞X × LZ/lΠ

τ
∞Y.

Proof. By Proposition 4.1, it suffices to prove the lemma for τ = ét. Since LZ/l preserves finite
products and Xét and X∧

ét have the same Z/l-local shape (see Remark 3.5), it suffices to show
that the canonical map

(5.2) Π∞(X ×k Y )∧ét → Π∞X∧
ét ×Π∞Y ∧

ét

is a Z/l-homological equivalence or, equivalently, that it induces an isomorphism in cohomology
with coefficients in any Z/l-module M . Both sides of (5.2) are corepresented by cofiltered
diagrams of simplicial sets having finitely many simplices in each degree (by Remark 1.3 and
the fact that any étale hypercovering of a Noetherian scheme is refined by one that is degreewise
Noetherian). If K is any such pro-space, C∗(K,Z/l) is a cofiltered diagram of degreewise finite
chain complexes of vector spaces. On the one hand, this implies

C∗(K,M) ≃ C∗(K,Z/l)⊗M,

so we may assume that M = Z/l. On the other hand, it implies that the Künneth map

H∗(Π∞X∧
ét,Z/l)⊗H∗(Π∞Y ∧

ét ,Z/l) → H∗(Π∞X∧
ét ×Π∞Y ∧

ét ,Z/l)

is an isomorphism. The composition of this isomorphism with the map induced by (5.2) in
cohomology is the canonical map

H∗
ét(X,Z/l)⊗H∗

ét(Y,Z/l) → H∗
ét(X ×k Y,Z/l),

which is also an isomorphism by [SGA4 1
2 , Th. finitude, Corollaire 1.11]. □

Remark 5.3. Let X be a Noetherian scheme and let τ ∈ {h, qfh, ét}. We observed in the proof
of Proposition 5.1 that the pro-space Π∞(X∧

τ ) is the limit of a cofiltered diagram of spaces whose
integral homology groups are finitely generated. It follows from Proposition 3.11 that LFΠ

τ
∞X

is F -profinite for any prime field F , which answers [Isa05, Question 11.3] quite generally.

Now let τ and σ be pretopologies on SchS with τ finer than σ, and let C be a small full
subcategory of SchS closed under σ-coverings (but not necessarily under τ -coverings). Then the
functor Πτ

∞ : C → Pro(S) takes values in a cocomplete ∞-category and is a σ-cosheaf according
to Lemma 1.5, so it lifts uniquely to a left adjoint functor

C Pro(S).

Shvσ(C)

Πτ
∞

Πτ
∞

Remark 5.4. If C is such that C/X contains the small τ -site of X for any X ∈ C, then Πτ
∞ is

simply the composition

Shvσ(C) Shvτ (C) Top∞ Pro(S),
aτ Π∞

where for X an ∞-topos the inclusion X ↪→ Top∞ is X 7→ X/X . Indeed, this composition
preserves colimits (by [HTT, Proposition 6.3.5.14]), and it restricts to Πτ

∞ on C (cf. Remark 1.1).
However, the reader should be warned that we will use Πτ

∞ in situations where this hypothesis
on C is not satisfied.

Remark 5.5. The extension Πτ
∞ involves taking infinite colimits in Pro(S), which are some-

what ill-behaved (they are not universal, for example). As we will see in §9, it is sometimes
advantageous to consider a variant of Πτ

∞ taking values in ind-pro-spaces.

Theorem 5.6. Let k be a separably closed field, l ̸= char k a prime number, and X a quasi-
projective scheme over k. Let τ ∈ {h, qfh, ét}. Then for any d ≥ 0 there is a canonical equiva-
lence

LZ/lΠ
τ
∞(SdX) ≃ LZ/lS

dΠτ
∞(X).
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Proof. Let C be the category of quasi-projective schemes over k. By Corollary 4.6, the repre-
sentable sheaf functor rqfh : C → Shvqfh(C) preserves strict symmetric powers. Using Proposi-

tion 5.1 and the fact that LZ/lΠ
qfh
∞ preserves colimits, we deduce that LZ/lΠ

qfh
∞ preserves strict

symmetric powers on C. For τ ∈ {h, qfh, ét}, we get

LZ/lΠ
τ
∞(SdX) ≃ LZ/lΠ

qfh
∞ (SdX) ≃ SdLZ/lΠ

qfh
∞ (X) ≃ SdLZ/lΠ

τ
∞(X),

the first and last equivalences being from Proposition 4.1. The functor LZ/l itself also preserves
finite products (Proposition 3.3) and hence strict symmetric powers, so we are done. □

Remark 5.7. It is possible to define a natural map

Π∞((SdX)∧τ ) → SdΠ∞(X∧
τ )

in Pro(S) inducing the equivalence of Theorem 5.6. It suffices to make the square

(5.8)

Π∞((Xd)∧τ ) Π∞(X∧
τ )

d

Π∞((SdX)∧τ ) SdΠ∞(X∧
τ )

commute. Using the model for the τ -homotopy type discussed in Remark 1.3 and the commu-
tativity of the functor of connected components with symmetric powers, the task to accomplish
is the following: associate to any τ -hypercover U• → X a τ -hypercover V• → SdX refining
SdU• → SdX and such that V• ×SdX Xd → Xd refines Ud

• → Xd, in a simplicially enriched func-
torial way (i.e., we must define a simplicial functor HCτ (X) → HCτ (S

dX) and the refinements
must be natural). If τ = h or τ = qfh, SdU• → SdX is itself a τ -hypercover and we are done,
but things get more complicated for τ = ét as symmetric powers of étale maps are not étale
anymore.

We refer to [Kol97, §4.5] and [Ryd13, §3] for more details on the following ideas. Given a
finite group G and quasi-projective G-schemes U and X, a map f : U → X is G-equivariant
if and only if it admits descent data for the action groupoid of G on X. The map f is fixed-
point reflecting if it admits descent data for the Čech groupoid of the quotient map X → X/G
(this condition can be expressed more explicitly using the fact that G × X → X ×X/G X is
faithfully flat: f is fixed-point reflecting if and only if it is G-equivariant and induces a fiberwise
isomorphism between the stabilizer schemes). Since étale morphisms descend effectively along
universally open surjective morphisms [Ryd10, Theorem 5.19], such as X → X/G, the condition
that f reflects fixed points is equivalent to the induced map U/G → X/G being étale and the
square

U X

U/G X/G

being cartesian. If f is G-equivariant, there exists a largest G-equivariant open subset fpr(f) ⊂ U
on which f is fixed-point reflecting. Moreover, if f : U → X is an étale cover, the restriction
of fd to fpr(fd) is still surjective. Now given an étale hypercover U• → X, we can define an
étale hypercover V• → SdX refining SdU• → SdX as follows. Let W0 ⊂ Ud

0 be the locus where
Ud
0 → Xd reflects fixed points. If W• has been defined up to level n − 1, define Wn by the

cartesian square

Wn fpr(Ud
n → (coskn−1 U

d
• )n)

(coskn−1 W•)n (coskn−1 U
d
• )n

in which the vertical maps are Σd-equivariant fixed-point reflecting étale covers (because fixed-
point reflecting morphisms are stable under base change). Finally, let Vn = Wn/Σd. It is then
easy to prove that V• → SdX is an étale hypercover with the desired functoriality.
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Using the commutativity of (5.8), one can also show that the map induced by Π∞((SdX)∧ét) →
SdΠ∞(X∧

ét) in cohomology with coefficients in a Z/l-module coincides with the symmetric
Künneth map defined in [SGA4, XVII, (5.5.17.2)]. Thus, for X proper, it is possible to de-
duce Theorem 5.6 from [SGA4, XVII, Théorème 5.5.21].

6. A1-localization

Let S be a quasi-compact quasi-separated scheme and C a full subcategory of SchS such that

(1) objects of C are of finite presentation over S;
(2) S ∈ C and A1

S ∈ C;
(3) if X ∈ C and U → X is étale, separated, and of finite presentation, then U ∈ C;
(4) C is closed under finite products and finite coproducts.

Following [Voe10, §0], we call such a category C admissible. Note that every smooth S-scheme
admits an open covering by schemes in C. Let ShvNis(C) denote the ∞-topos of sheaves of
spaces on C for the Nisnevich topology, and let ShvNis(C)A1 ⊂ ShvNis(C) be the full subcategory
of A1-invariant Nisnevich sheaves. We shall denote by

LNis,A1 : PSh(C) → ShvNis(C)A1

the left adjoint to the inclusion.
From now on we fix a prime number l different from the residual characteristics of S. In §1,

we defined the functor

Πét
∞ : C → Pro(S),

and we observed in §5 that it lifts to a left adjoint functor

Πét
∞ : ShvNis(C) → Pro(S).

By [SGA5, VII, Corollaire 1.2], the composition

ShvNis(C) Pro(S) Pro(S)Z/l

Πét
∞ LZ/l

sends any morphism A1 × X → X in C to an equivalence and therefore factors through the
A1-localization functor LNis,A1 . That is, there is a commutative square of left adjoint functors

ShvNis(C) Pro(S)

ShvNis(C)A1 Pro(S)Z/l.

Πét
∞

LNis,A1

Étl

LZ/l

The functor Étl is called the Z/l-local étale homotopy type functor. Note that if S is Noetherian
(resp. Noetherian and excellent), we could also use Πqfh

∞ (resp. Πh
∞) instead of Πét

∞ in the above
diagram, according to Proposition 4.1.

Remark 6.1. The Z/l-profinite completion LZ/l Étl is the∞-categorical incarnation of the étale
realization functor defined by Isaksen in [Isa04a] as a left Quillen functor, but our results do not

require this stronger completion. Note that Étl X is already Z/l-profinite if S is Noetherian and
X ∈ (ShvNis(C)A1)ω, by Remarks 5.3 and 3.12.

We now assume that S = Spec k where k is a separably closed field.

Lemma 6.2. The restriction of Étl to the subcategory of compact objects (ShvNis(C)A1)ω pre-
serves finite products.

Proof. By Proposition 5.1, the functor LZ/lΠ
ét
∞ preserves finite products on C. Since the functor

LNis,A1r : C → ShvNis(C)A1 also preserves finite products, the restriction of Étl to the image of
C preserves finite products. Finally, since (ShvNis(C)A1)ω is the closure of the image of C under
finite colimits and retracts, the result follows from Corollary 3.4. □
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Let p ≥ q ≥ 0. We define the Z/l-local mixed spheres Sp,q
l ∈ Pro(S)Z/l,∗ by

S1,0
l = LZ/lS

1 = K(Zl, 1), S1,1
l = K(Tlµ, 1), Sp,q

l = (S1,0
l )∧p−q ∧ (S1,1

l )∧q,

where µ is the group of roots of unity in k and Tlµ = limn µln is its l-adic Tate module. Here we
regard Zl and Tlµ as pro-groups. Of course, Sp,q

l ≃ LZ/lS
p, but if q > 0 this equivalence depends

on infinitely many noncanonical choices (viz., an isomorphism Zl ≃ Tlµ). By Proposition 3.11,
Sp,q
l is Z/l-profinite.

Note that the functor Étl preserves pointed objects, since Πét
∞(Spec k) ≃ ∗.

Proposition 6.3. Let p ≥ q ≥ 0. Then Étl S
p,q ≃ Sp,q

l .

Proof. This is obvious if q = 0. By Lemma 6.2, it remains to treat the case p = q = 1. The
étale µln -torsor ln : Gm → Gm is classified by a morphism Πét

∞Gm → K(µln , 1). In the limit
over n ≥ 0, we obtain a morphism of pro-spaces ϕ : Πét

∞Gm → K(Tlµ, 1). We claim that ϕ is a
Z/l-homological equivalence, i.e., it induces an isomorphism in cohomology with coefficients in
any Z/l-module M . By [SGA5, VII, Proposition 1.3(i)(c)], we have

Hi
ét(Gm,M) =


M if i = 0,

Hom(µl,M) if i = 1,

0 if i ≥ 2.

In fact, this computation shows that the morphism Πét
∞Gm → K(µl, 1) induces an isomorphism

on Hi(−,M) for i ≤ 1. The same is true for the projection K(Tlµ, 1) → K(µl, 1), hence also for
ϕ. Since both the source and the target of ϕ have vanishing cohomology in degrees ≥ 2, this
completes the proof. □

7. Group completion and strictly commutative monoids

Let C be an ∞-category with finite products. Recall from [HA, §2.4.2] that a commutative
monoid in C is a functor M : Fin∗ → C such that for all n ≥ 0 the canonical map M(⟨n⟩) →
M(⟨1⟩)n is an equivalence. We let CMon(C) denote the full subcategory of Fun(Fin∗,C) spanned
by the commutative monoids.

A commutative monoid M in C has an underlying simplicial object, namely its restriction
along the functor Cut: ∆op → Fin∗ sending [n] to the finite set of cuts of [n] pointed at the
trivial cut, which can be identified with ⟨n⟩. The commutative monoid M is called grouplike
if its underlying simplicial object is a groupoid object in the sense of [HTT, Definition 6.1.2.7].
This is equivalent to requiring both shearing maps M ×M → M ×M to be equivalences. We
denote by CMongp(C) ⊂ CMon(C) the full subcategory of grouplike objects.

If f : C → D preserves finite products (and C and D admit finite products), then it induces
a functor CMon(C) → CMon(D) by postcomposition; this functor clearly preserves grouplike
objects and hence restricts to a functor CMongp(C) → CMongp(D). We will continue to use f
to denote either induced functor.

Lemma 7.1. Suppose that f : C → D preserves finite products and has a right adjoint g. Then
the functors CMon(C) → CMon(D) and CMongp(C) → CMongp(D) induced by f are left adjoint
to the corresponding functors induced by g.

Proof. The functors f and g induce adjoint functors between∞-categories of Fin∗-diagrams, and
it remains to observe that they both preserve the full subcategory of (grouplike) commutative
monoids. □

Definition 7.2. An ∞-category C is distributive if it is presentable and if finite products in C

distribute over colimits. A functor f : C → D between distributive ∞-categories is distributive
if it preserves colimits and finite products.

For example, for any ∞-topos X, the truncation functors τ≤n : X → X≤n are distributive,
and for any admissible category C ⊂ SchS and any topology τ on C, the localization functor
Lτ,A1 : PSh(C) → Shvτ (C)A1 is distributive.

If C is distributive, then the ∞-category CMon(C) is presentable by [HA, Corollary 3.2.3.5],
and the subcategory CMongp(C) is strongly reflective since it is accessible (by [HTT, Proposition
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6.1.2.9] and [HTT, Proposition 5.4.6.6]) and is clearly closed under limits and sifted colimits.
That is, there exists a group completion functor

CMon(C) → CMongp(C), M 7→ Mgp,

which exhibits CMongp(C) as an accessible localization of CMon(C).3

Lemma 7.3. Let f : C → D be a distributive functor and let M ∈ CMon(C). Then f(Mgp) ≃
f(M)gp.

Proof. By Lemma 7.1, the square

CMon(C) CMon(D)

CMongp(C) CMongp(D)

f

gp

f

gp

has a commutative right adjoint and hence is commutative. □

Remark 7.4. If X is an ∞-topos, group completion of commutative monoids in X preserves
0-truncated objects. As in the proof of Lemma 2.5, it suffices to prove this for X = S, where
it follows from the McDuff–Segal group completion theorem (see [Nik17] for a modern proof of
the latter).

We can define a generalized “free Z-module” functor in any distributive ∞-category as follows.
Let FFreeN (resp. FFreeZ) be the full subcategory of CMon(Set) spanned by (Nn,+) (resp. by
(Zn,+)) for n ≥ 0. If C is an ∞-category with finite products, we shall denote by

ModN(C) ⊂ Fun(FFreeopN ,C) and ModZ(C) ⊂ Fun(FFreeopZ ,C)

the full subcategories of finite-product-preserving functors. The objects of ModN(C) are called
strictly commutative monoids in C. Since FFreeN is semiadditive [HA, Definition 6.1.6.13], the
∞-category ModN(C) is also semiadditive [GGN15, Corollary 2.4] and the forgetful functor

ModN(C) → C, M 7→ M(N),

factors uniquely through the ∞-category CMon(C) [GGN15, Corollary 2.5(iii)]. Similarly, as
FFreeZ is additive, the ∞-category ModZ(C) is additive and the forgetful functor ModZ(C) → C

factors uniquely through CMongp(C).
Assume now that C is distributive. The forgetful functors ModN(C) → C and ModZ(C) → C

then preserve limits and sifted colimits, hence admit left adjoints

N : C → ModN(C) and Z : C → ModZ(C).

Since the ∞-categories ModN(C) and ModZ(C) are pointed, we also have reduced versions ÑX

and Z̃X when X is a pointed object of C. More precisely, Ñ is the unique colimit-preserving
extension of N to C∗, and similarly for Z̃.

Lemma 7.5. If C is an ∞-category with finite products, the square

ModZ(C) ModN(C)

CMongp(C) CMon(C)

forget forget

3In fact, CMon(C) and CMongp(C) are presentable whenever C is, and the group completion functor exists in
that generality, see [GGN15, §4]. However, these constructions may not behave as expected if C is not distributive;

for example, the forgetful functor CMon(C) → C and the inclusion CMongp(C) ⊂ CMon(C) need not preserve
sifted colimits.
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is cartesian. If C is distributive, the top functor ModZ(C) → ModN(C) admits a left adjoint such
that the following square commutes:

ModZ(C) ModN(C)

CMongp(C) CMon(C).

forget

gp

forget

In particular, Z̃X ≃ (ÑX)gp for any X ∈ C∗.

Proof. Since FFreeN is semiadditive and FFreeZ is additive, the forgetful functors CMongp(C) →
CMon(C) → C induce equivalences

ModN(C) ≃ ModN(CMon(C)),

ModZ(C) ≃ ModZ(CMongp(C)).

The key point is that the ∞-category FFreeZ is obtained from FFreeN be group-completing the
mapping spaces, so that FFreeN → FFreeZ is the universal finite-product-preserving functor to
an additive ∞-category. Therefore, the forgetful functor

ModZ(C) → ModN(C)

can be identified with the functor

ModZ(CMongp(C)) ≃ ModN(CMongp(C)) → ModN(CMon(C)).

This description immediately implies the claims: the first claim follows since a finite-product-
preserving functorM : FFreeopN → CMon(C) lands in CMongp(C) if and only ifM(N) is grouplike,
and the second claims follows since group completion preserves finite products. □

We can describe free strictly commutative monoids more concretely using strict symmetric
powers (see §2):

Lemma 7.6. Let C be a distributive ∞-category. Then the composite functor

C
N−→ ModN(C)

forget−−−→ C

is given by X 7→
∐
d≥0

SdX.

Proof. It suffices to check this for the universal X, which lives in the distributive ∞-category
Fun(Fin, S). We may thus assume C = S. In that case, the forgetful functor ModN(S) → S is
modeled by the right Quillen functor ModN(Set∆) → Set∆ [HTT, Proposition 5.5.9.1], whose
left adjoint is given by the desired formula. Since the functor Sd on S can be computed using
symmetric powers of CW complexes, this completes the proof. □

Remark 7.7. Lemma 7.6 shows that the endofunctor X 7→
∐

d≥0 S
dX of any distributive ∞-

category has a canonical structure of monad. Its multiplication involves a canonical equivalence
Sd(X ⨿ Y ) ≃

∐
e+f=d S

eX × SfY and a canonical map SdSeX → SdeX.

If C is presentable and A is a small ∞-category with finite products, we have

Fun×(A,C) ≃ C⊗ Fun×(A, S)

where ⊗ denotes the tensor product of presentable ∞-categories (this follows immediately from
[HA, Proposition 4.8.1.17]). Hence, the presentable ∞-category ModZ(C) of grouplike strictly
commutative monoids in C is a module over ModZ(S), which is the ∞-category of connective
HZ-modules. For X ∈ ModZ(C) and A a connective HZ-module, we will write X ⊗ A for the
result of the action of A on X. Note that the construction X 7→ X ⊗ A is preserved by any
colimit-preserving functor f : C → D.

In particular, if C is distributive and X ∈ C, one can form the strictly commutative monoid
ZX ⊗ A for any connective HZ-module A, which can be described more concretely as follows.
Any connective HZ-module A can be obtained from Z in the following steps:

(1) take finite products of copies of Z to get finitely generated free Z-modules;
(2) take filtered colimits of finitely generated free Z-modules to get arbitrary flat Z-modules;
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(3) take colimits of simplicial diagrams of free Z-modules to get arbitrary connective HZ-
modules [HTT, Lemma 5.5.8.13].

Since the forgetful functor ModZ(C) → C preserves finite products and sifted colimits, the object
ZX ⊗A in C can be obtained from ZX using the same steps.

In the distributive ∞-category S, ZX ⊗ A has its “usual” meaning. For instance, if A is an
abelian group, then Z̃Sp ⊗A is an Eilenberg–Mac Lane space K(A, p).

8. Sheaves with transfers

Let S be a Noetherian scheme, C ⊂ SchS an admissible category consisting of separated
S-schemes, and R a commutative ring. We denote by Cor(C, R) the additive category whose
objects are those of C and whose morphisms are the finite correspondences with coefficients in
R [CD19, §9].4 We denote by PSh∗(C) the ∞-category of pointed presheaves on C, by

PShtr(C, R) = Fun×(Cor(C, R)op, S)

the ∞-category of presheaves with R-transfers, and by

Rtr : PSh
∗(C) ⇄ PShtr(C, R) : utr

the free–forgetful adjunction. The functor utr preserves limits and sifted colimits and factors
through the∞-category CMongp(PSh(C)); in fact, it factors through the∞-category of grouplike
strictly commutative monoids, using the finite-product-preserving functor

FFreeZ → Cor(C, R), Zn 7→ S⨿n.

Since finite products and finite coproducts coincide in semiadditive ∞-categories, the functor

utr : PShtr(C, R) → ModZ(PSh(C))

preserves all colimits.
For τ a topology on C, we denote by Shvtrτ (C, R) the ∞-category of τ -sheaves with R-transfers

on C, and by Shvtrτ (C, R)A1 the ∞-category of homotopy invariant τ -sheaves with R-transfers
on C; these are defined by the cartesian squares

Shvtrτ (C, R)A1 Shvtrτ (C, R) PShtr(C, R)

Shv∗τ (C)A1 Shv∗τ (C) PSh∗(C).

utr utr utr

By [HTT, Proposition 5.5.4.15], the ∞-categories Shvtrτ (C, R) and Shvtrτ (C, R)A1 are presentable
and there exist localization functors

atrτ : PShtr(C, R) → Shvtrτ (C, R),

Ltr
τ,A1 : PShtr(C, R) → Shvtrτ (C, R)A1 .

Furthermore, by [HTT, Proposition 5.4.6.6], the forgetful functors utr in the above diagram are
accessible. Since they preserve limits, they admit left adjoint functors, which we will denote by
Rtr (it will always be clear from the context which category Rtr is defined on).

We say that a topology τ on C is compatible with R-transfers if for any presheaf with R-
transfers F on C, the canonical map

aτutrF → utra
tr
τ F

is an equivalence. The following lemma shows that τ is compatible with transfers if and only if
it is weakly compatible with transfers in the sense of [CD19, Definition 9.3.2]. For example, it
follows from [CD19, Proposition 9.3.3] that the Nisnevich and étale topologies are compatible
with any transfers on any admissible category.

4In loc. cit., it is assumed that R ⊂ Q. For general R, we define Cor(C, R) by extending scalars from the
largest possible subring of Q.
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Lemma 8.1. A topology τ on C is compatible with R-transfers if and only if, for every τ -covering
sieve U ↪→ X, the morphism

aτutrRtr(U+) → aτutrRtr(X+)

is an equivalence in Shv∗τ (C).

Proof. If τ is compatible with transfers, then for any F ∈ PSh∗(C),

aτutrRtrF ≃ utra
tr
τ RtrF ≃ utrRtraτF.

Since aτ (U+) ≃ aτ (X+), this proves the “only if” direction.
Conversely, define

E = {RtrU+ → RtrX+ | U ↪→ X is a τ -covering sieve}

so that Shvtrτ (C, R) ⊂ PShtr(C, R) is the subcategory of E-local objects, and suppose that the
functor aτutr sends elements of E to equivalences. Let Ē be the strong saturation of E, i.e., the
smallest class of morphisms containing E, satisfying the 2-out-of-3 property, and closed under
colimits in Fun(∆1,PShtr(C, R)). By [HTT, Proposition 5.5.4.15(4) and Proposition 5.2.7.12],
the localization functor atrτ : PShtr(C, R) → Shvtrτ (C, R) is the universal functor sending elements
of Ē to equivalences. We claim that aτutr sends morphisms in Ē to equivalences. It will suffice
to show that the class of morphisms f such that aτutr(f) is an equivalence is closed under the
2-out-of-3 property (which is obvious) and colimits. The functor utr : PShtr(C, R) → PSh∗(C, R)
does not preserve colimits, but it preserves sifted colimits and transforms finite coproducts into
finite products. Since aτ is left exact and any colimit can be built out of finite coproducts and
sifted colimits, this proves the claim. Thus, there exists a functor f : Shvtrτ (C, R) → Shv∗τ (C)
making the diagram

Shvtrτ (C, R) PShtr(C, R) Shvtrτ (C, R)

Shv∗τ (C) PSh∗(C) Shv∗τ (C)

atr
τ

utr utr f

aτ

commute. Since the horizontal compositions are the identity, f ≃ utr and aτutr ≃ utra
tr
τ . □

Lemma 8.2. Suppose that τ is compatible with R-transfers. Then the square

PShtr(C, R) Shvtrτ (C, R)A1

ModZ(PSh(C)) ModZ(Shvτ (C)A1)

Ltr
τ,A1

utr

Lτ,A1

utr

commutes.

Proof. Consider the diagram

Shvtrτ (C, R)A1 PShtr(C, R) Shvtrτ (C, R)A1

ModZ(Shvτ (C)A1) ModZ(PSh(C)) ModZ(Shvτ (C)A1).

utr

Ltr
τ,A1

utr

Lτ,A1

f

It will suffice to show that a functor f exists as indicated. Define

Eτ = {RtrU+ → RtrX+ | U ↪→ X is a τ -covering sieve in C},
EA1 = {Rtr(X ×A1)+ → RtrX+ |X ∈ C},

so that Shvtrτ (C, R)A1 ⊂ PShtr(C, R) is the full subcategory of (Eτ ∪ EA1)-local objects. The
functor Lτ,A1utr carries morphisms in Eτ and EA1 to equivalences: for Eτ , this is because τ
is compatible with R-transfers and for EA1 it is because utrRtr(X × A1)+ → utrRtrX+ is an
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A1-homotopy equivalence (see the last part of the proof of [Voe10, Theorem 1.7]). By [HTT,
Proposition 5.5.4.20], there exists a functor f making the above diagram commutes. □

Corollary 8.3. Suppose that τ is compatible with R-transfers. Then the forgetful functor
utr : Shvtrτ (C, R)A1 → ModZ(Shvτ (C)A1) preserves colimits.

Proof. This follows immediately from Lemma 8.2. □

The ∞-category Shvtrτ (C, R)A1 is tensored over connective HR-modules. For p ≥ q ≥ 0 and
A a connective HR-module, the motivic Eilenberg–Mac Lane space

K(A(q), p)C ∈ Shv∗Nis(C)A1

is defined by

K(A(q), p)C = utr(RtrS
p,q ⊗A),

where Sp,q ∈ Shv∗Nis(C)A1 is the motivic p-sphere of weight q. Although this construction
depends on the coefficient ring R in general, it does not if either the schemes in C are regular
or if the positive residual characteristics of S are invertible in R [CD19, Remark 9.1.3(3)]; the
latter will always be the case in what follows.

9. The étale homotopy type of motivic Eilenberg–Mac Lane spaces

Let k be a separably closed field, l ̸= char k a prime number, and C ⊂ Schk an admissible
category. One defect of the Z/l-local étale homotopy type functor Étl : ShvNis(C)A1 → Pro(S)Z/l

is that it does not preserve finite products and hence does not preserve commutative monoids.
We have seen in Lemma 6.2 that Étl preserves finite products between compact motivic spaces,
but motivic Eilenberg–Mac Lane spaces are certainly not compact. We will fix this problem by
constructing a factorization

ShvNis(C)A1

Ét×l−−→ E → Pro(S)Z/l

of Étl such that Ét×l is distributive and E is a “close approximation” of Pro(S)Z/l by a distributive

∞-category (see Definition 7.2). For our applications, we will also need Ét×l to factor through

Shv∧h (Sch
ft
k )A1 . The fact that the latter ∞-category may not be compactly generated explains

some of the complexity of the following construction.

Construction 9.1. Let i : C ↪→ Schftk be the inclusion and let i! : ShvNis(C) → ShvNis(Sch
ft
k )

be its colimit-preserving extension. Since C is admissible and in particular closed under finite
products, the functor i! is distributive. Note that we have a commuting triangle

ShvNis(C) Shvh(Sch
ft
k )

Pro(S),

ahi!

Πh
∞ Πh

∞

where Πh
∞ was defined in §5, and that the functor Πh

∞ on the right is simply Π∞, in the sense
of Remark 5.4. For any ∞-topos X, we have a commutative square

X X≤n

Pro(S) Pro(S≤n),

τ≤n

τ≤n

Π∞ Πn

where the horizontal maps are given by truncation and Πn = τ≤n ◦Π∞. We can therefore factor
the Z/l-local shape functor LZ/lΠ∞ : X → Pro(S)Z/l as

X → X∧ τ≤∗−−→ lim
n

X≤n → lim
n

Pro(S≤n)Z/l ≃ Pro(S)Z/l,
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where the last equivalence is (3.10). Since truncations preserve colimits and finite products, the

functor τ≤∗ is distributive. Applying this procedure to the ∞-topos X = Shvh(Sch
ft
k ), we obtain

a factorization of LZ/lΠ
h
∞ as

ShvNis(C)
a∧
h i!−−−→ Shv∧h (Sch

ft
k )

τ≤∗−−→ lim
n

Shvh(Sch
ft
k )≤n → lim

n
Pro(S≤n)Z/l ≃ Pro(S)Z/l.

Let Pro′(S) be the smallest full subcategory of Pro(S) containing Πh
∞X for every k-scheme of

finite type X and closed under finite products, finite colimits, and retracts. We similarly define
the ∞-categories Pro′(S)Z/l, Pro′(S≤n), and Pro′(S≤n)Z/l to be generated by the respective

localizations of Πh
∞X. Recall that the localization functors LZ/l and τ≤n preserve finite products

(Proposition 3.3). By Remarks 5.3 and 3.12, the pro-spaces in Pro′(S) satisfy the assumption of
Proposition 3.13, so that the localization functor LZ/l,≤n : Pro′(S) → Pro′(S≤n)Z/l also preserves
finite products. It follows that finite products distribute over finite colimits in each of these ∞-
categories, so that their ind-completions are distributive.

Consider the colimit-preserving functor

LZ/l,≤nΠ
h
∞ : Shvh(Sch

ft
k )≤n → Pro(S≤n)Z/l.

By Lemma 4.3, the ∞-category Shvh(Sch
ft
k )≤n is compactly generated by representables, so that

(Shvh(Sch
ft
k )≤n)

ω is generated by representables under finite colimits and retracts. Hence, this
functor restricts to a functor

LZ/l,≤nΠ
h
∞ : (Shvh(Sch

ft
k )≤n)

ω → Pro′(S≤n)Z/l

that preserves finite colimits. It also preserves finite products by Proposition 5.1, so that the
induced functor on ind-completions

Shvh(Sch
ft
k )≤n → Ind(Pro′(S≤n)Z/l)

is distributive. Thus, the composition

ShvNis(C)
τ≤∗a

∧
h i!−−−−−→ lim

n
Shvh(Sch

ft
k )≤n → lim

n
Ind(Pro′(S≤n)Z/l)

is distributive, and it inverts X ×A1 → X for every X ∈ C since LZ/lΠ
h
∞ does, so it induces a

distributive functor

Ét×l : ShvNis(C)A1 → lim
n

Ind(Pro′(S≤n)Z/l).

By construction, Étl is the composition of Ét×l and the colimit functor

lim
n

Ind(Pro′(S≤n)Z/l) → lim
n

Pro(S≤n)Z/l ≃ Pro(S)Z/l. □

The next theorem is our étale version of [Voe10, Proposition 3.41]. We point out that the
category C in the statement below need not be closed under symmetric powers, so the theorem
applies directly with C the category of smooth separated k-schemes with no need for resolutions
of singularities.

Theorem 9.2. Let k be an algebraically closed field of characteristic exponent e, l ̸= e a prime
number, and C ⊂ Schk an admissible subcategory consisting of semi-normal separated schemes.
Then for any pointed object X in ShvNis(C)A1 and any connective HZ[1/e]-module A, there is
an equivalence

θX,A : Z̃ Ét×l X ⊗A ≃ Ét×l utr(ZtrX ⊗A)

of grouplike strictly commutative monoids in limn Ind(Pro
′(S≤n)Z/l), natural in X and A, with

the following properties:

(1) the triangle

Ét×l X Z̃ Ét×l X ⊗ Z[1/e]

Ét×l utrZ[1/e]trX

1

Ét×l (unit)
θX,Z[1/e]≃

is commutative;
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(2) given X, Y , A, and B, the square

(Z̃ Ét×l X ⊗A) ∧ (Z̃ Ét×l Y ⊗B)

Z̃ Ét×l (X ∧ Y )⊗ (A⊗B)

Ét×l utr(ZtrX ⊗A) ∧ Ét×l utr(ZtrY ⊗B)

Ét×l utr(Ztr(X ∧ Y )⊗ (A⊗B))

θX,A ∧ θY,B ≃

θX∧Y,A⊗B≃

is commutative.

Proof. Any k-scheme of finite type is Zariski-locally quasi-projective, so we can assume that the
schemes in C are quasi-projective without changing the categories and functors involved. As X
varies, the source and target of θX,A are functors taking values in strictly commutative monoids
in limn Ind(Pro

′(S≤n)Z/l), and as such they preserve colimits: for the left-hand side this is clear
and for the right-hand side it follows from Corollary 8.3. In particular, these functors are left
Kan extended from their restriction to C. To show the existence of θX,A, it will therefore suffice
to define θX,A for X representable, i.e., X = LNis,A1r(Z)+ for some Z ∈ C, and this construction

should be natural in Z and A. Furthermore, since utr is HZ-linear and Ét×l is distributive, we
have

Ét×l utr(ZtrX ⊗A) ≃ Ét×l utr(ZtrX)⊗A

so we can assume A = Z[1/e]. Let i : C ↪→ Schftk be the inclusion. By the motivic Dold–Thom
theorem [Voe10, Theorem 3.7] (see also [SV96, Theorem 6.8]), there is an equivalence

utrZ[1/e]trZ+ ≃ aNis((
∐
d≥0

i∗r(SdZ))gp[1/e])

of pointed presheaves on C, natural in Z. Note that the validity of this formula does not depend
on the scheme SdZ belonging to C. By Lemma 8.2 and the distributivity of LNis,A1 , we obtain
equivalences

utrZ[1/e]trX ≃ LNis,A1((
∐
d≥0

i∗r(SdZ))gp[1/e]) ≃ (
∐
d≥0

LNis,A1i∗r(SdZ))gp[1/e]

in ShvNis(C)A1 . Since Ét×l preserves group completions of commutative monoids (Lemma 7.3)
and colimits,

Ét×l utrZ[1/e]trX ≃ (
∐
d≥0

Ét×l LNis,A1i∗r(SdZ))gp[1/e].

On the other hand, by Lemmas 7.5 and 7.6 and since Ét×l LNis,A1 commutes with Sd,

Z̃ Ét×l X ⊗ Z[1/e] ≃ (
∐
d≥0

Ét×l LNis,A1SdrNis(Z))gp[1/e].

We then define θX,Z[1/e] : Z̃ Ét×l X ⊗ Z[1/e] → Ét×l utrZ[1/e]trX to be the map induced by the
obvious canonical map

ϕ : SdrNis(Z) → i∗r(SdZ)

in ShvNis(C)≤0. To show that θX,Z[1/e] is an equivalence, it suffices to show that Ét×l LNis,A1(ϕ) is

an equivalence. By definition of Ét×l , the functor Ét
×
l LNis,A1 factors through a∧h i! : ShvNis(C) →

Shv∧h (Sch
ft
k ), so it suffices to show that a∧h i!(ϕ) is an equivalence. This follows from Corollary 4.6

and Proposition 4.7 (since k is perfect and every smooth k-scheme is Zariski-locally in C).
The strategy to prove (1) and (2) is the following: we first reduce as above to the representable

case, where the statements follow from properties of the motivic Dold–Thom equivalence. For
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(1), we may assume thatX is represented by Z ∈ C. Then the adjunction mapX → utrZ[1/e]trX
corresponds, through the Dold–Thom equivalence, to the map

Z+ ≃ S0Z ⨿ S1Z ↪→
∐
d≥0

SdZ → (
∐
d≥0

SdZ)gp[1/e],

which proves the result. For (2), we may assume that X and Y are represented by Z and W

and that A = B = Z[1/e]. Moreover, we can replace Z̃ with Ñ. It then suffices to note that the
pairing

utrZ[1/e]trX ∧ utrZ[1/e]trY → utrZ[1/e]tr(X ∧ Y )

arising from the monoidal structure of Z[1/e]tr is induced, via the Dold–Thom equivalence, by
the obvious maps SaZ × SbW → Sab(Z ×W ). □

For A a connective HZ-module, let Al be the pro-HZ-module limn A/ln. Note that Al ≃ A
if A admits an HZ/ln-module structure for some n ≥ 1.

Lemma 9.3. Let A be a connective HZ-module and p ≥ 1. Then

LZ/lK(A, p) ≃ τ<∞K(Al, p).

Proof. We can assume A truncated, as both sides preserve the limit of the Postnikov tower of
A. Then A is a finite product of HZ-modules of the form B[i] with B discrete and i ≥ 0. Since
K(B[i], p) ≃ K(B, p+ i) and since both sides preserve finite products (see Proposition 3.3), we
can assume A discrete. By the principal fibration lemma [BK72, III, 3.6], we can reduce to the
case p = 1 and A free abelian. In this case we have πnLZ/lK(A, 1) = 0 for n ≥ 2 [BK72, IV,
Lemma 4.4] and π1LZ/lK(A, 1) ≃ Al by the proof of [BK72, IV, Lemma 2.4]. □

Given q ∈ Z, we let Al(q) = Al ⊗Zl
Tlµ

⊗q (which is noncanonically isomorphic to Al). For

example, Z/ln(q) ≃ µ⊗q
ln .

Theorem 9.4. Let k be an algebraically closed field of characteristic exponent e, l ̸= e a prime
number, and C ⊂ Schk an admissible subcategory consisting of semi-normal separated schemes.
For any connective HZ[1/e]-module A and any integers p, q with p ≥ 1 and p ≥ q ≥ 0, there is
a canonical equivalence

Étl K(A(q), p)C ≃ τ<∞K(Al(q), p)

of pointed objects in Pro(S)Z/l, natural in A, and Étl preserves smash products between such
spaces. Furthermore, under these equivalences,

(1) Étl sends the canonical map

Sp,q → K(Z[1/e](q), p)C

to the canonical map
Sp,q
l → K(Zl(q), p);

(2) Étl sends the canonical map

K(A(q), p)C ∧K(B(s), r)C → K((A⊗B)(q + s), p+ r)C

to the canonical map

τ<∞K(Al(q), p) ∧ τ<∞K(Bl(s), r) → τ<∞K((A⊗B)l(q + s), p+ r).

Proof. By Theorem 9.2, we have

Ét×l K(A(q), p)C ≃ Z̃ Ét×l Sp,q ⊗A.

By Proposition 6.3 and the definition of Ét×l (see Construction 9.1), we have

Ét×l Sp,q ≃ LZ/l,≤∗S
p,q
l ,

where Sp,q
l ∈ Pro′(S)Z/l is considered as a constant ind-Z/l-local pro-space. Thus,

Ét×l K(A(q), p)C ≃ Z̃LZ/l,≤∗S
p,q
l ⊗A.

Now we apply the colimit functor

c : lim
n

Ind(Pro′(S≤n)Z/l) → lim
n

Pro(S≤n)Z/l ≃ Pro(S)Z/l
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to both sides. The left-hand side becomes Étl K(A(q), p)C, by definition of Ét×l . We are thus
reduced to proving that

(9.5) c(Z̃LZ/l,≤∗S
p,q
l ⊗A) ≃ τ<∞K(Al(q), p).

For this, we consider the following commutative diagram:

Sω Ind(Sω) lim
n

Ind(Pro′(S≤n)) lim
n

Ind(Pro′(S≤n)Z/l)

S Pro(S<∞) Pro(S)Z/l.

i jind

c≃

j

c

Lind

c

LZ/l

Note that LZ/l,≤∗S
p,0
l is the image of Sp by the top row of this diagram. The functor jind is

clearly distributive and Lind is distributive by Proposition 3.13. We therefore have equivalences

c(Z̃LZ/l,≤∗S
p,0
l ⊗A) ≃ c(Z̃(LindjindiSp)⊗A) ≃ cLindjind(Z̃iSp ⊗A) ≃ LZ/ljK(A, p),

which concludes the case q = 0 by Lemma 9.3. It also concludes the general case if one is
willing to choose an isomorphism Zl ≃ Tlµ. However, the twisting for q > 0 makes the equiva-
lence (9.5) independent of such a choice, as a consequence of the following observation: if α is

an automorphism of Zl, then the automorphism id∧(p−q) ∧ α∧q of Sp,0
l induces α⊗q on the top

homology pro-group Zl. A similar argument shows that Étl(X∧Y ) ≃ Étl(X)∧ Étl(Y ) whenever

Ét×l X and Ét×l Y belong to the essential image of Lindjind. The remaining statements are easily
deduced from properties (1) and (2) in Theorem 9.2. □

In conclusion, let us emphasize the two most important special cases of Theorem 9.4:

Corollary 9.6. Let k be an algebraically closed field of characteristic exponent e, l ̸= e a prime
number, and C ⊂ Schk an admissible subcategory consisting of semi-normal separated schemes.

(1) For any Z[1/e] ⊂ Λ ⊂ Z(l), there is a canonical equivalence

Étl K(Λ(q), p)C ≃ K(Tlµ
⊗q, p),

where Tlµ
⊗q is the l-adic Tate module of µ⊗q viewed as a pro-group.

(2) For any n ≥ 1, there is a canonical equivalence

Étl K(Z/ln(q), p)C ≃ K(µ⊗q
ln , p).

In particular, Étl K(Z/ln(q), p)C is a constant pro-space.

In both cases, the Z/l-local étale homotopy type is already Z/l-profinite.
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