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Abstract. We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary

qcqs derived schemes. To that end, we study a stable ∞-category of non-A1-invariant motivic spectra,
which turns out to be equivalent to the ∞-category of fundamental motivic spectra satisfying elementary

blowup excision, previously introduced by the first and third authors. We prove that this ∞-category

satisfies P1-homotopy invariance and weighted A1-homotopy invariance, which we use in place of A1-
homotopy invariance to obtain analogues of several key results from A1-homotopy theory. These allow

us in particular to define a universal oriented motivic E∞-ring spectrum MGL. We then prove that

the algebraic K-theory of a qcqs derived scheme X can be recovered from its MGL-cohomology via a
Conner–Floyd isomorphism

MGL∗∗(X)⊗L Z[β±1] ≃ K∗∗(X),

where L is the Lazard ring and Kp,q(X) = K2q−p(X). Finally, we prove a Snaith theorem for the

periodized version of MGL.
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1. Introduction

In this article we construct algebraic cobordism as a non-A1-invariant cohomology theory on derived
schemes, and establish its basic expected properties: we show that it is the universal oriented cohomology
theory, that it is related to algebraic K-theory via a Conner–Floyd isomorphism, and that its periodic
version can be obtained from the infinite Grassmannian by inverting the Bott element (Snaith theorem).
These results refine the analogous theorems in A1-homotopy theory proven in [PPR08], [SØ09], and
[GS09], respectively. To establish our results, we study a stable ∞-category of non-A1-invariant motivic
spectra as in [AI23], which contains the stable A1-homotopy category of Morel–Voevodsky as its full
subcategory of A1-invariant objects. We prove in particular that this category satisfies P1-homotopy
invariance and weighted A1-homotopy invariance, which are weak forms of A1-homotopy invariance, al-
lowing us to do “homotopy theory” in algebraic geometry while keeping the affine line A1 non-contractible.
For example, we prove that the stack of vector bundles BGLn is equivalent to the infinite Grassmannian
Grn in this setting.

The A1-homotopy theory of Morel–Voevodsky [MV99] has been highly successful in the study of
A1-invariant cohomology theories, playing an instrumental role in the resolution of the Milnor [OVV07,
Voe03] and the Bloch–Kato [Voe11] conjectures. On the other hand, A1-homotopy theory is not useful
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for studying p-adic cohomology theories like crystalline and prismatic cohomology [BMS19, BS22], since
these are usually not A1-invariant. This is unfortunate, because deeper understanding of the p-torsion
is often important for various applications: for instance, cohomological obstructions to the existence of
resolution of singularities by blowups in characteristic p, if they exist, are expected to be p-torsion due to
the existence of resolution by p-alterations [Sul04, Tem17]. Other important examples of non-A1-invariant
cohomology theories are the algebraic and hermitian K-theory of singular schemes [CHW07, Sch17].

Here, we continue to develop the framework for non-A1-invariant motivic homotopy theory introduced
in [AI23], based on the idea of replacing A1-invariance with (a non-oriented version of) the projective
bundle formula. More precisely, for a derived scheme S, we say that a Zariski sheaf on the ∞-category
SmS of smooth S-schemes satisfies elementary blowup excision if it carries the blowup square

Pn−1
X Bl{0}(An)X

{0}X AnX

to a cartesian square for every X ∈ SmS and n ≥ 1. Let PZar,ebu(SmS ,Sp) denote the ∞-category of
Zariski sheaves of spectra on SmS satisfying elementary blowup excision. Then, for the purposes of this
paper, we define the ∞-category of motivic spectra as the presentably symmetric monoidal ∞-category
obtained from the latter by ⊗-inverting the pointed projective line P1:

MSS = PZar,ebu(SmS ,Sp)[(P1)−1] ∈ CAlg(PrL).

The ultimate goal of our framework is to provide efficient tools to study non-A1-invariant cohomology
theories and their cohomology operations. As most cohomology theories in algebraic geometry, including
all the ones mentioned above, satisfy the projective bundle formula, this framework is widely applicable.

The main object of interest in this paper is algebraic cobordism. Our treatment of it follows closely the
now classical treatment in A1-homotopy theory [Voe96, Voe98]. Namely, we define algebraic cobordism
as the cohomology theory represented by a non-A1-invariant Thom spectrum MGL. For a finite locally
free sheaf E on S, we define the Thom space of E by

ThS(E) = P(E⊕ O)/P(E) ∈ P(SmS)∗.

An important technical point is that we are able to promote ThS(−) to a symmetric monoidal functor

ThS : Vect(S)→ PZar,ebu(SmS)∗,

which factors through the K-theory space K(S) after inverting P1 on the target. Following [BH21,
Section 16], we then define the algebraic cobordism spectrum MGL to be the colimit of the Thom spectra
of rank-zero K-theory classes over SmS , i.e.,

MGL = colim
X∈SmS
rk ξ=0

ThX(ξ) ∈ MSS .

It is clear from this construction that MGL is canonically equipped with an E∞-algebra structure. After
imposing A1-invariance, our motivic spectrum MGL reduces to Voevodsky’s. In this sense, the latter
theory should be regarded as the homotopy cobordism theory, analogously to how algebraic K-theory
reduces to homotopy K-theory after A1-localization [Wei89, Cis13].

Beyond the construction, three main results on MGL are established. First of all, we prove that MGL
is the universal homotopy commutative oriented ring spectrum, providing a non-A1-invariant refinement
for the analogous claim in A1-homotopy theory [PPR08].

Theorem 1.1 (Universality of MGL, Theorem 7.5). The algebraic cobordism spectrum MGL is the initial
oriented object in CAlg(hMSS).

Secondly, we prove that the algebraic K-groups can formally be recovered from the MGL-cohomology
groups, by imposing the multiplicative formal group law for Chern classes of line bundles. This is a
non-A1-invariant refinement of [SØ09, Theorem 1.2]. Morally, it should also be the “higher version” of
the Conner–Floyd theorem proved in [Ann22b].

Theorem 1.2 (Conner–Floyd isomorphism, Theorem 8.11). For any qcqs derived scheme X, there is
an isomorphism of bigraded rings

MGL∗∗(X)⊗L Z[β±1] ≃ K∗∗(X),

where L is the Lazard ring and Kp,q(X) = K2q−p(X).
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The above result may be regarded as a sanity check for our construction, because it establishes a
precise relationship between MGL and K-theory, the latter of which has a generally-accepted definition.

Let PMGL be the periodic algebraic cobordism spectrum, defined to be the colimit of the Thom spectra
of all K-theory classes over SmS . Our third main result provides a concrete geometric model for PMGL
as a motivic spectrum, refining the A1-homotopical Snaith theorem proved in [GS09].

Theorem 1.3 (Snaith theorem for PMGL, Theorem 9.3). There is a canonical isomorphism

PMGL ≃ Σ∞
P1Vect∞,+[β

−1]

in CAlg(hMSS).

This result allows us to easily compute maps from PMGL to other motivic spectra. An analogous result
was proven in [AI23] for algebraic K-theory. The advantage of the cobordism version is that algebraic
cobordism has a much richer structure than algebraic K-theory, owing to the fact that K-theory is
confined to the first chromatic level. Hence, algebraic cobordism should be more useful than K-theory
in studying, e.g., torsion in crystalline and syntomic cohomology and other infinite-chromatic-height
phenomena.

In order to obtain the aforementioned results, we significantly advance the foundational understanding
of non-A1-invariant motivic spectra. Our main insight is that ⊗-inverting the pointed projective line P1

leads, in a nontrivial fashion, to P1-homotopy invariance, and more generally to a twisted form thereof
that we call P-homotopy invariance.

Theorem 1.4 (P-homotopy invariance, Theorem 4.1). Let E be a finite locally free sheaf on X ∈ P(SmS)
and σ : E→ OX a linear map. Then there is a canonical homotopy h(σ) in MSS between

X
σ−→ V(E) ⊂ P(E⊕ OX)

and the zero section. The homotopy h(σ) is functorial in (S,X,E, σ) and is the identity if σ = 0.

Using P-homotopy invariance in place of A1-homotopy invariance, we are able to prove several useful
results for motivic spectra.

Theorem 1.5. The following results hold in MSS.

(i) (Bass fundamental theorem, Proposition 4.12) The canonical pointed map

P1 → ΣGm
admits a retraction.

(ii) (Euler class of O(1), Proposition 4.14) Let s, i : P1 ⇒ PP1(O(1) ⊕ O) be the zero section and the
inclusion of the fiber at infinity, respectively. Then the two composites

P1
+ PP1(O(1)⊕ O)+ PP1(O(1)⊕ O)/PP1(O(1)) = ThP1(O(1))

s

−i

are homotopic.
(iii) (Weighted A1-homotopy invariance, Corollary 4.8) Let A1/Gm be the quotient stack with respect

to a Gm-action of nonzero weight. Then the canonical map

A1/Gm → BGm = Pic

is an equivalence.
(iv) (Infinite excision, Proposition 5.1) The open embedding

A∞ − 0 ↪→ A∞

is an equivalence.
(v) (Geometric model of the stack of vector bundles, Theorem 5.3) The canonical map

Grn → Vectn

is an equivalence.

In fact, (iii) and (iv) hold more generally; see the mentioned references and Lemma 5.2. The results
listed in Theorem 1.5 are all either well-known or obvious after A1-localization; (i), (iii), (iv) are obvious,
(ii) is contained in [Pan03, proof of Lemma 3.8], and (v) is [MV99, Section 4, Proposition 3.7]. Without
A1-localization, (v) was previously proved when restricted to oriented theories in [AI23, Theorem 4.4.6] by
adapting an argument from [AI22]. The proof presented here is logically independent from the previous
one, more general, and simpler.
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The stable ∞-category MSS is by definition the stabilization of MSunS = PZar,ebu(SmS)∗[(P1)−1].
Combining the Bass fundamental theorem (i) with the stability theorem [AI23, Theorem 2.4.5], we
obtain the following version of Bass delooping.

Theorem 1.6 (Bass delooping, Corollary 4.13). The functor

Ω∞ : MSS → MSunS

is fully faithful and its essential image consists exactly of the fundamental objects, i.e., those E ∈ MSunS
such that the canonical map P1 ⊗ E → ΣGm ⊗ E admits a retraction.

Remark 1.7. Theorem 1.5 applies in particular to any spectrum-valued cohomology theory satisfying
the projective bundle formula (since this implies elementary blowup excision [AI23, Lemma 3.3.5]), such
as the syntomic cohomology of schemes defined in [BL22]. This shows that the computation of the
syntomic cohomology of X × BGLn [BL22, Theorem 9.3.1] and of the classifying stack of a parabolic
subgroup [BL22, Corollary 9.2.10] are “formal” consequences of the projective bundle formula [BL22,
Theorem 9.1.1], and hence that the p-quasisyntomicity assumption in the statements of these results is
not necessary.

Remark 1.8. The cohomology groups MGL∗∗(X) are expected to provide higher algebraic cobordism
groups, extending the non-A1-invariant algebraic cobordism groups Ω∗(X) constructed in characteristic
0 in [Ann20] and over a general Noetherian base ring A in [AY19, Ann22b, Ann21]. More precisely, for
all quasi-projective derived A-schemes X, we expect canonical isomorphisms Ωn(X) ≃ MGL2n,n(X) for
all n ∈ Z. We prove this with rational coefficients (Corollary 8.13), but establishing such a comparison
with integer coefficients seems difficult, and is not pursued here.

Related work. Other constructions of motivic homotopy categories without A1-invariance have been
developed based on extensions of the category of schemes itself: one by Kelly and Miyazaki using modulus
pairs [KM21] and one by Binda, Park, and Østvær using log schemes [BPØ23]. Our construction is in
some sense more naive, as it is simply a variant without A1-invariance of the P1-stable motivic homotopy
category of Morel and Voevodsky. Since any scheme may be viewed as either a modulus pair or a log
scheme, there are canonical functors from our ∞-category of motivic spectra to theirs.

Binda, Park, and Østvær also prove similar results to ours in the logarithmic setting; they define
in particular the logarithmic cobordism spectrum logMGL and prove its universality. Although their
definition looks slightly different than our definition of MGL, the universal properties imply that logMGL
is the image of MGL.

Conventions and notation. We use the word “anima” for spaces/∞-groupoids and we denote by Ani
the ∞-category of anima. We write P(C) for the ∞-category of presheaves of anima on C. If τ is a
Grothendieck topology on C, Pτ (C) ⊂ P(C) is the full subcategory of τ -sheaves. We write Sp for the ∞-
category of spectra and Sp(C) for the ∞-category of spectrum objects in C. If C admits filtered colimits,
we write Cω ⊂ C for the full subcategory of compact objects. We write hC for the homotopy category of
an ∞-category C.

For a presentably symmetric monoidal∞-category V and an object X ∈ V, we write SpX(V) = V[X−1]
for the symmetric monoidal∞-category of symmetric X-spectra [AI23, Section 1] and Σ∞

X : V→ SpX(V)
for the canonical functor.

We use the following indexing conventions for cohomology theories represented by P1-spectra. If X is
pointed, we write Ẽn(X) = π0Map(Σ∞

P1X,ΣnP1E) and Ẽp,q(X) = (Σp−2qẼ)q(X). If X is unpointed, we

write E∗(X) = Ẽ∗(X+) and E
∗∗(X) = Ẽ∗∗(X+).

A scheme is a derived scheme by default. Note that we often use hooked arrows ↪→ for immersions
of derived schemes, even though these are not monomorphisms. We write SchX for the ∞-category of
X-schemes and SmX ⊂ SchX for the full subcategory of smooth X-schemes. The superscript “fp” means
“of finite presentation”.

We write Vect(X) for the anima of finite locally free sheaves over a scheme X, and Pic(X) = Vect1(X)
for the subanima of invertible sheaves. For a sheaf E ∈ Vect(X), we denote by V(E) = Spec(SymE) and
P(E) = Proj(SymE) the associated vector and projective bundles.

Acknowledgments. We thank Dustin Clausen for helpful discussions about weighted A1-homotopy
invariance and infinite excision, Jacob Lurie for useful discussions and answering questions about his
recent work with Bhargav Bhatt, and Vova Sosnilo for useful discussions and insights about weighted
A1-homotopy invariance.
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2. Smooth blowup excision

Let S be a derived scheme. We refer to [KR19] for the definition of the blowup of a derived scheme
at a quasi-smooth closed subscheme.

Definition 2.1. Let C be an ∞-category and F : Smop
S → C a C-valued presheaf.

(i) We say that F satisfies smooth blowup excision if F (∅) is a final object of C and for every closed
immersion i : Z ↪→ X in SmS , F sends the blowup square

E BlZX

Z Xi

to a cartesian square.
(ii) A closed immersion i : Z ↪→ X is called elementary if, Zariski-locally on X, it is the zero section

of AnZ ⊔ Y for some n ≥ 0 and some Y . We say that F satisfies elementary blowup excision if (i)
holds whenever i is elementary.

We denote by Psbu(SmS) ⊂ Pebu(SmS) the corresponding full subcategories of P(SmS), and by Lsbu and
Lebu the corresponding localization functors, which preserve finite products.

The above definition of elementary blowup excision is slightly less elementary than [AI23, Definition
3.1.1], but it is obviously equivalent for Zariski sheaves. Note that if F : Smop

S → C satisfies elementary
blowup excision, then F preserves finite products. In particular, we have Pebu(SmS) ⊂ PΣ(SmS). For
Nisnevich sheaves of spectra, there is no difference between elementary and smooth blowup excision:

Proposition 2.2. Suppose that C is stable and that F : Smop
S → C satisfies Nisnevich descent and

elementary blowup excision. Then F satisfies smooth blowup excision.

Proof. Let i : Z ↪→ X be a closed immersion in SmS . Zariski-locally on X, there exist cartesian squares

Z Z Z

X V AnZ ,

i t s

where the horizontal maps are étale and s is the zero section (the proof of [MV99, Section 3, Lemma 2.28]
works without change for derived schemes; alternatively, one can observe that the claim depends only
on the underlying classical schemes, by the topological invariance of the étale site). Let B → X be
the blowup of X at Z, E ⊂ B the exceptional divisor, U = X − Z and W = V − Z. We then have a
commutative diagram

E B ×X V W

E B U

Z V W

Z X U .

t

i

Since F satisfies Nisnevich descent, it takes the top and bottom face on the right-hand side to cartesian
squares, hence also the middle face in the diagram. Hence, on the left-hand side, we see that F sends
the blowup square for i to a cartesian square if it sends the blowup square for t to a cartesian square,
and also conversely since C is stable. Since the same applies with s instead of i, the claim follows. □

Construction 2.3 (Cubes and total cofibers). For a finite set I, we denote by □I the poset of subsets
of I. We let Cube ⊂ Cat∞ be the subcategory whose objects are the cubes □I and whose morphisms
are the colimit-preserving functors. A morphism of cubes is called strict if it sends non-initial objects to
non-initial objects; we denote by Cubes ⊂ Cube the wide subcategory of strict morphisms. Thus:

MapCube(□
I ,□J) ≃ Map(I,□J) and MapCubes(□

I ,□J) ≃ Map(I,□J − {∅}).
The cartesian symmetric monoidal structure on Cat∞ restricts to a symmetric monoidal structure on
both Cube and Cubes (which is cartesian on Cube but not on Cubes). Note that the 1-cube □1 is
a final object of Cubes and hence admits a unique structure of commutative monoid in Cubes, whose
multiplication is ∪.
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Let C be an ∞-category. We denote by Cube(C) → Cube the cartesian fibration classified by the
functor

Cubeop → Cat∞, □I 7→ Fun(□I,op,C),

and by Cubes(C) ⊂ Cube(C) the wide subcategory given by the preimage of Cubes ⊂ Cube. Thus:

• An object of Cube(C) is a pair (I,X) consisting of a finite set I and an I-cube X : □I,op → C.
• A morphism (I,X)→ (J, Y ) in Cube(C) is a map of cubes α : □I → □J together with a natural
transformation X → α∗(Y ). It is a morphism in Cubes(C) if and only if α is strict.

If C admits finite colimits, then each functor α∗ admits a left adjoint α!, so that the cartesian fibration
Cube(C)→ Cube is also cocartesian.

Suppose now that C has a symmetric monoidal structure. Then the above functor Cubeop → Cat∞
is lax symmetric monoidal, so that Cube(C) → Cube is a symmetric monoidal cartesian fibration: the
tensor product (I,X) ⊗ (J, Y ) is the I ⊔ J-cube K ⊔ L 7→ X(K) ⊗ Y (L). If moreover C admits finite
colimits that are preserved by the tensor product in each variable, then each functor α! is symmetric
monoidal, so that Cube(C)→ Cube is also a symmetric monoidal cocartesian fibration. Over Cubes, the
total pushforward to the final object □1 then gives a symmetric monoidal functor

Cubes(C)→ Fun(□1,op,C) ≃ Fun(∆1,C),

(I,X) 7→
(
colim
∅̸=J⊂I

X(J)→ X(∅)

)
,

where Fun(∆1,C) is equipped with the Day convolution (also known as the pushout-product). If C has a
final object ∗, there is a further symmetric monoidal functor cofib: Fun(∆1,C)→ C∗. Hence, we obtain
a symmetric monoidal functor

tcofib: Cubes(C)→ C∗

sending a cube in C to its total cofiber.

Definition 2.4. Let S be a derived scheme and let X be a smooth S-scheme. A relative strict normal
crossings divisor ∂X on X is the data of a finite set I and of an I-cube

□I,op → (SmS)/X , J 7→ ∂JX,

such that ∂∅X = X and:

(i) the cube is strongly cartesian in SchS (i.e., it is right Kan extended from □I,op≤1 );

(ii) for each subset J ⊂ I, the map ∂JX → X in SmS is a closed immersion, which is everywhere of
codimension |J |.

We let Smsncd
S denote the full subcategory of Cubes(SmS) spanned by the relative strict normal crossings

divisors (X, ∂X).

By definition, a relative strict normal crossings divisor ∂X on X is uniquely determined by the
smooth divisors ∂iX → X with i ∈ I, called the smooth components of ∂X. Note that the symmetric
monoidal structure on Cubes(SmS) restricts to Smsncd

S : if ∂X has smooth components ∂iX and ∂Y has
smooth components ∂jY , then the tensor product (X, ∂X)⊗(Y, ∂Y ) is given by the relative strict normal
crossings divisor on the smooth S-scheme X ×S Y with smooth components ∂iX ×S Y and X ×S ∂jY .

Given (X, ∂X) ∈ Smsncd
S , we will also denote by ∂X the colimit of the punctured cube in P(SmS)/X . As

explained in Construction 2.3, we then have symmetric monoidal functors

Smsncd
S → Fun(∆1,P(SmS))→ P(SmS)∗,

(X, ∂X) 7→ (∂X → X) 7→ X/∂X.

Remark 2.5. If S is a classical scheme, one can show that the image of the presheaf ∂X in PΣ(SmS)/X
depends only on the underlying Cartier divisor

∑
i∈I ∂iX on X, i.e., it is independent of the choice of

smooth components of that divisor (indeed, such choices form a poset, and one can obtain a common
refinement of any two choices by taking finite coproduct decompositions, see [NS08, Proposition A.0.7]).
We do not expect this to remain true for derived schemes, which is why we take the smooth components
as part of the data of a relative strict normal crossings divisor.

Remark 2.6 (Functoriality of quasi-smooth blowups). An excess intersection square is a commutative
square of derived schemes

Z ′ X ′

Z X,

i′

g f

i
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where i and i′ are quasi-smooth closed immersions, such that the underlying square of topological spaces
is cartesian and such that the induced map g∗(Ni) → Ni′ is surjective [Kha21]. The blowup of quasi-
smooth closed immersions is then functorial with respect to excess intersection squares. In classical
geometry, given i : Z ↪→ X and f : X ′ → X as above, one often speaks of the strict transform of X ′

with respect to the blowup of X at Z, which means the blowup of X ′ at Z ×X X ′. In derived geometry,
however, there are usually many ways of forming an excess intersection square, and it might not be
the actual pullback Z ×X X ′ that is geometrically relevant; for example, given quasi-smooth closed
immersions Z ↪→ Y ↪→ X, the relevant “strict transform” of Y is often the blowup of Y at Z and not
at Z ×X Y . In some of the geometric arguments in Section 3, we will nevertheless use the term “strict
transform” in cases where the intended excess intersection square is clear from the context. In fact, the
geometric situations we will deal with are always classical in the sense that the universal example lives
over a classical stack, where “strict transform” has its classical meaning.

If X is smooth over S and Z ⊂ X is a smooth closed subscheme, then Z is Zariski-locally on X the
zero locus of a map X → An. We will refer to such a map as coordinates along Z. If ∂X is a relative
strict normal crossings divisor on X with smooth components (∂iX)i∈I , then for every J ⊂ I there are
coordinates along ∂JX in which the divisors ∂iX with i ∈ J are the coordinate hyperplanes.

By a smooth center Z on (X, ∂X), we mean a closed immersion of I-cubes (ZJ)J → (∂JX)J in SmS

such that, for each J ⊂ I, there are coordinates along ZJ in which the divisors ∂iX with i ∈ J are some
of the coordinate hyperplanes while Z∅ is the vanishing locus of some subset of the coordinates. We
will also write Z for the underlying smooth closed subscheme Z∅ ↪→ X. Given a smooth center Z on
(X, ∂X), each square

ZJ ∂JX

Z X

is an excess intersection square, and we call the blowup of ∂JX at ZJ the strict transform of ∂JX. The
strict transforms ∂̃iX of the components ∂iX together with the exceptional divisor E then form a relative
strict normal crossings divisor ∂̃X ∪E on the blowup BlZX, with underlying finite set I ⊔{e}. Moreover,

the intersection
⋂
i∈J ∂̃iX is the strict transform ∂̃JX of ∂JX, and E ∩ ∂̃JX is the exceptional divisor of

this blowup.
Let Z be a smooth center on (X, ∂X). Given a subset K ⊂ I, we say that Z is contained in ∂KX if

ZJ∪K
∼−→ ZJ for all J ⊂ I. If K is nonempty, we obtain a morphism

(BlZX, ∂̃X ∪ E)→ (X, ∂X)

in Smsncd
S , whose underlying strict morphism of cubes □I⊔{e} → □I sends {i} to {i} and {e} to K.

Proposition 2.7. Let X be a smooth S-scheme, ∂X a relative strict normal crossings divisor on X,
and Z a smooth center on (X, ∂X) contained in ∂KX for some K ̸= ∅. Then the square

∂̃X ∪ E BlZX

∂X X

is cocartesian in Psbu(SmS). If moreover each closed immersion ZJ ↪→ ∂JX is elementary, then the
square is cocartesian in Pebu(SmS).

Proof. We consider the following commutative diagram in P(SmS):

E ∩ ∂̃X ∂̃X

E ∂̃X ∪ E BlZX

Z ∂X X.

The upper square is a pushout square in P(SmS), and the lower horizontal rectangle is a smooth blowup
square. It remains to show that the left vertical rectangle is a pushout in Psbu(SmS). This rectangle is
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the colimit in P(SmS) of the squares

E ∩ ∂̃JX ∂̃JX

ZJ ∂JX,

where J ranges over the nonempty subsets of the underlying finite set of ∂X. Each of these squares is a
smooth blowup square, which proves the claim. □

3. Thom spaces

Let S be a derived scheme. For a smooth S-scheme X (or more generally an arbitrary presheaf X on
SmS) and a finite locally free sheaf E on X, we define the Thom space of E by

ThX(E) = P(E⊕ O)/P(E) ∈ P(SmS)∗.

Let Vectepi(S) be the∞-category of finite locally free sheaves on S and epimorphisms (i.e., morphisms
that are surjective on π0). Recall that an epimorphism E ↠ F induces a linear embedding P(F) ↪→ P(E).
Consequently, the Thom space construction defines a functor

Vectepi(S)op → P(SmS)∗, E 7→ ThS(E) = P(E⊕ O)/P(E).

This functor does not have a lax symmetric monoidal structure, as there is no natural map between the
pointed presheaves

ThS(E⊕ F) and ThS(E) ∧ ThS(F).

Our goal in this section is to construct a symmetric monoidal structure on the composite functor

Vectepi(S)op → P(SmS)∗ → Pebu(SmS)∗.

For a finite locally free sheaf E on S, we will regard P(E⊕O) as an object of Smsncd
S with the smooth

boundary divisor P(E). The Thom space ThS(E) is thus the image of P(E⊕O) by the symmetric monoidal
functor

Smsncd
S → P(SmS)∗, (X, ∂X) 7→ X/∂X,

defined in Section 2.
Let now E = (Ei)i∈I be a finite collection of finite locally free sheaves on S, and let us contemplate

the problem of relating
∏
i∈I P(Ei ⊕O) and P(

⊕
i∈I Ei ⊕O) in the ∞-category Smsncd

S . To that end, we

will construct an object B(E) ∈ Smsncd
S and a zigzag

(3.1)
∏
i∈I

P(Ei ⊕ O)
bΠ←− B(E) bP−→ P

(⊕
i∈I Ei ⊕ O

)
,

such that both maps become isomorphisms in Pebu(SmS)∗.
1

Let us first consider the special case when I = {1, 2} and E1 = E2 = O. On the left-hand side of (3.1)
we then have P1×P1 with boundary divisor (∞×P1)∪ (P1×∞), and on the right-hand side we have P2

with boundary divisor P1 at infinity. In this case, B(O,O) is the blowup of P1 × P1 at the point (∞,∞),
which can be identified with the blowup of P2 at the two points [1 : 0 : 0] and [0 : 1 : 0], and the boundary
divisor ∂B(O,O) is the union of the three exceptional divisors.

We now explain the general construction. For a subset J ⊂ I, let
ZJ = P

(⊕
i/∈J Ei

)
⊂ P

(⊕
i∈I Ei ⊕ O

)
.

Thus, Z∅ is the boundary divisor, the Zi’s are linear subspaces of Z∅ in a ∂∆I configuration, and for
J ̸= ∅ we have ZJ =

⋂
i∈J Zi. For a subset K ⊂ I, let

WK =
∏
i∈K

P(Ei)×
∏
i/∈K

P(Ei ⊕ O) ⊂
∏
i∈I

P(Ei ⊕ O).

Thus,
⋃
i∈IWi is the boundary divisor and WK =

⋂
i∈KWi.

We first describe the scheme B(E) via its functor of points: a point of B(E) is a family (YJ)J⊂I , where
YJ ⊂ P(

⊕
i∈I Ei ⊕ O) is a linear subspace such that ZJ is a hyperplane in YJ , and such that if K ⊂ J

then YK ⊃ YJ . In other words, a point of B(E) is a family of factorizations⊕
i∈I Ei ⊕ O ↠ FJ

χJ

↠
⊕

i/∈J Ei,

1For this construction, it would suffice to work with classical schemes, since the universal example is classical.
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such that the kernel LJ of χJ is invertible, and such that if J ′ ⊂ J then FJ is a quotient of FJ′ . This
is in turn equivalent to a family of invertible quotients φJ :

⊕
i∈J Ei ⊕ O ↠ LJ such that if J ′ ⊂ J

then the restriction of φJ to
⊕

i∈J′ Ei ⊕ O factors through φJ′ .2 The epimorphism φJ defines a point
of P(

⊕
i∈J Ei ⊕ O), which can be thought of as the normal direction to ZJ inside YJ . We thus have

canonical morphisms
πJ : B(E)→ P

(⊕
i∈J Ei ⊕ O

)
,

which exhibit B(E) as a closed subscheme of a product of 2|I| projective bundles over S. Taking J = I
yields a morphism

bP : B(E)→ P
(⊕

i∈I Ei ⊕ O
)
,

sending the family (YJ)J⊂I to the point YI . Taking J to be a singleton yields a morphism

bΠ : B(E)→
∏
i∈I

P(Ei ⊕ O),

sending the family (YJ)J⊂I to (Yi)i∈I .
Next, we want to show that both bP and bΠ are sequences of smooth blowups. To see this, we will

need the following description of strict transforms when blowing up zero loci of sections of vector bundles
(the description of the blowup itself already appears in [Ann22c, Theorem 122]):

Lemma 3.2 (Blowing up zero loci). Let X be a derived scheme, E a finite locally free sheaf on X, and
σ : E→ O a linear map. Then the blowup of X at the zero locus of σ classifies factorizations of σ as

E
φ−→ L

τ−→ O,

where L is invertible and φ is surjective. The exceptional divisor is then the zero locus of τ . If moreover
µ : F → E is a universally injective morphism of finite locally free sheaves, then the strict transform of
the zero locus of σ ◦ µ is the zero locus of φ ◦ µ.
Proof. We use the description of the functor of points of the blowup from [KR19]: BlZ(σ)X classifies pairs
(τ, f) consisting of a generalized Cartier divisor τ : L→ O and an X-morphism f : Z(τ)→ Z(σ) inducing
an isomorphism of underlying classical schemes and such that the induced morphism of conormal sheaves
E|Z(τ) → L|Z(τ) is surjective. We must show that this data is equivalent to that of a factorization of σ as
above. On the one hand, such a factorization induces a map f : Z(τ)→ Z(σ), which is an isomorphism
on classical schemes by the surjectivity φ, and the induced map of conormal sheaves is surjective since
it is the restriction of φ. Conversely, let (τ, f) be a pair as above. The map f induces an O-linear map

φ : E→ fib(O→ OZ(σ))
f∗

−→ fib(O→ OZ(τ)) = L

over O, whose restriction to Z(τ) is the morphism of conormal sheaves induced by f . It remains to
observe that φ is surjective: it is surjective over the points of Z(τ) = Z(σ) by assumption; over the
complement, τ is an isomorphism and σ is surjective, so that φ is also surjective.3

In the final statement, the assumption that µ is universally injective guarantees that Z(σ) is a quasi-
smooth closed subscheme of Z(σ ◦ µ), namely the zero locus of the induced map σ̄ : cokerµ → O. It is
then clear from the above description that Z(φ ◦ µ) is the blowup of Z(σ ◦ µ) at the zero locus of σ̄. □

By definition, B(E) parametrizes I-cubes of invertible sheaves (LJ)J⊂I with a surjective map from the
I-cube (

⊕
i∈J Ei ⊕ O)J⊂I . We let B≥r(E) be the functor parametrizing the same data but with |J | ≥ r.

The morphism bP can then be factored as

B(E) = B≥0(E) = B≥1(E)→ B≥2(E)→ · · · → B≥|I|(E) = P
(⊕

i∈I Ei ⊕ O
)
.

Proposition 3.3. For each 0 ≤ r ≤ |I| − 1, the map B≥r(E) → B≥r+1(E) is a blowup with center∐
|J|=r Z̃J , where Z̃J is the strict transform of ZJ . For J ⊂ I with |J | = r, define

L>J = lim
J⫋J′

LJ′

in the stable ∞-category of quasi-coherent sheaves on B≥r+1(E). Then L>J is an invertible sheaf, locally

isomorphic to LJ∪{i} with i ∈ I − J , and Z̃J is the zero locus of the map⊕
i∈J

Ei ⊕ O→ L>J

2Factoring through an epimorphism is merely a property when S is a classical scheme, but it should of course be

understood as the data of compatible factorizations when S is a derived scheme.
3This argument shows that, in the description of the blowup in [KR19, Remark 4.1.3(ii)], we can replace “isomorphism

of classical schemes” by “isomorphism of reduced schemes”.
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induced by the maps φJ′ for J ⫋ J ′.

Proof. Assuming the given description of Z̃J for |J | = r, Lemma 3.2 says that blowing up Z̃J in B≥r+1(E)
adds the data of a factorization ⊕

i∈J
Ei ⊕ O

φJ

↠ LJ → L>J .

We therefore obtain exactly B≥r(E) by blowing up all Z̃J ’s with |J | = r, as claimed.

Consider the right Kan extension L̃ of the diagram of sheaves L on B≥r+1(E) from the poset of subsets

J ⊂ I of size ≥ r + 1 to the poset of all subsets of I, so that L̃J = L>J when |J | = r. We will show

more generally that, for any J ⊂ I of size ≤ r, L̃J is an invertible sheaf such that the strict transform
Z̃J is the zero locus of the map ⊕

i∈J
Ei ⊕ O→ L̃J .

(This is in fact true for all J ⊂ I, but trivial if |J | ≥ r + 1.) We assume inductively that B≥r+1(E) is
a sequence of blowups as claimed, and that the strict transforms of the ZJ ’s up to B≥r+2(E) have the
above description.

For every J ⫋ I with |J | ≥ r+1, let EJ be the Cartier divisor on B≥r+1(E) which is the zero locus of

LJ → L>J , i.e., the preimage of the exceptional divisor over the strict transform Z̃J ⊂ B≥|J|+1(E). Let
Ui ⊂ B≥r+1(E) be the open complement of

⋃
i/∈J EJ . Note that EJ ∩EJ′ = ∅ whenever J and J ′ are not

contained in one another, since then the strict transforms of ZJ and ZJ′ became disjoint in the blowup
B≥|J∪J′|(E). It follows that B≥r+1(E) is covered by any |I| − r of the open subsets Ui. For any J ⊂ I,
we deduce by descending induction on |J | that the open subsets UR =

⋂
i∈R Ui with |J ∪R| ≥ r+1 form

an open covering of B≥r+1(E).

For J ⫋ I with |J | ≥ r + 1, let O(−EJ) = LJ ⊗L−1
>J and let σJ : O(−EJ)→ O be the canonical map,

whose zero locus is EJ . Taking the determinant of the cartesian cube defining L>J , we find

O(−EJ) ≃
⊗
J⊂J′

L
(−1)|J

′−J|

J′ and hence
⊗

J⊂J′ ̸=I

O(−EJ′) ≃ LJ ⊗ L−1
I .

Under this isomorphism, the map LJ → LJ∪{i} corresponds to the tensor product of the maps σJ′ with
i /∈ J ′. In other words, the zero locus of LJ → LJ∪{i} is the union of the divisors EJ′ with J ⊂ J ′ and
i /∈ J ′. Hence, for any R ⊂ I, the map LJ → LJ∪R is an isomorphism over UR. Passing to the right Kan
extension, this implies that the map L̃J → L̃J∪R is an isomorphism over UR for all subsets J,R ⊂ I:
this follows from the fact that the functor

{J ′ | J ⊂ J ′ and |J ′| ≥ r + 1} → {J ′ | J ∪R ⊂ J ′ and |J ′| ≥ r + 1},
J ′ 7→ J ′ ∪R,

is coinitial, since it is left adjoint to the inclusion. Since the UR’s with |J ∪ R| ≥ r + 1 form an open

covering of B≥r+1(E), we see that L̃J is locally isomorphic to the invertible sheaves LJ∪R.

Fix J ⊂ I of size ≤ r and let R ⊂ I be such that |J ∪R| = r+ 1. It remains to show that Z̃J ∩UR is

the zero locus of
⊕

i∈J Ei ⊕O→ L̃J over UR, as these UR’s cover B≥r+1(E). Since L̃J ≃ LJ∪R over UR,
this is the same as the zero locus of⊕

i∈J
Ei ⊕ O ↪→

⊕
i∈J∪R

Ei ⊕ O
φJ∪R−−−→ LJ∪R.

By the description of strict transforms from Lemma 3.2 and the induction hypothesis, this locus is exactly
the strict transform of ZJ in the blowup of B≥r+2(E) at Z̃J∪R. To conclude, we observe that the other
exceptional divisors of the blowup B≥r+1(E) → B≥r+2(E), i.e., the divisors ES with |S| = r + 1 and

S ̸= J ∪ R, do not intersect Z̃J ∩ UR. If J ̸⊂ S, then J ∪ S has size ≥ r + 2 and hence the strict
transforms of ZJ and ZS in B≥r+2(E) are disjoint. If J ⊂ S but S ̸= J ∪ R, then R ̸⊂ S and hence
ES ∩ UR = ∅ by definition of UR. □

In order to see that bΠ is analogously a sequence of blowups at the strict transforms of the subschemes
WK , we need a dual description of B(E). Let B∨(E) be the functor parametrizing families of invertible
quotients Ei ⊕ O ↠ Li for i ∈ I, together with a compatible family of universally injective maps
ψK : MK ↪→

⊕
i∈K Li for all nonempty subsetsK ⊂ I, whereMK is an invertible sheaf. By a “compatible

family” we mean that for any nonempty K ′ ⊂ K, the composition of ψK with the projection
⊕

i∈K Li ↠⊕
i∈K′ Li factors through ψK′ , and moreover that O →

⊕
i∈I Li factors through ψI ; in other words,
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the maps ψK form a morphism of punctured I-cubes under O. Let further B∨
>r(E) be the functor

parametrizing such families with |K| > r. We then have a sequence of forgetful maps

B∨(E) = B∨
>0(E) = B∨

>1(E)→ · · · → B∨
>|I|−1(E)→ B∨

>|I|(E) =
∏
i∈I

P(Ei ⊕ O).

Proposition 3.4. For each 1 ≤ r ≤ |I|, the map B∨
>r−1(E) → B∨

>r(E) is a blowup with center∐
|K|=r W̃K , where W̃K is the strict transform of WK . For K ⊂ I with |K| = r, define

M>K =

{
O, if K = I,

colimK⫋K′ MK′ , otherwise,

in the stable ∞-category of quasi-coherent sheaves on B∨
>r(E). Then M>K is an invertible sheaf, locally

isomorphic to MK∪{i} with i ∈ I −K, and W̃K is the zero locus of the map

M>K →
⊕
i∈K

Li

induced by the maps ψK′ for K ⫋ K ′.

Proof. The proof is similar to that of Proposition 3.3: the colimit defining M>K (and more generally the
left Kan extension of M to a punctured I-cube under O) is locally trivial, and blowing up the zero locus
of M>K →

⊕
i∈K Li in B∨

>r(E) adds the data of a factorization

M>K →MK
ψK
↪→

⊕
i∈K

Li,

leading to B∨
>r−1(E). □

Lemma 3.5 (Stable duality for punctured cubes). Let I be a finite set, let P be the poset such that
P ▷ = (∆1)I , and let C be a stable ∞-category. Then there is a canonical isomorphism

Fun(P,C)
∼−→ Fun(P op,C),

F 7→
(
p 7→ colim

q∈Pp/

F (q)

)
,

with inverse

Fun(P op,C)
∼−→ Fun(P,C),

G 7→
(
p 7→ lim

q∈(Pp/)op
G(q)

)
.

Proof. Let Catst∞ be the symmetric monoidal ∞-category of small stable ∞-categories, whose unit is the

∞-category Spfin of finite spectra. Let K be a finite ∞-category, all of whose mapping anima are also
finite (e.g., a finite poset). Then the stable ∞-category Fun(K,Spfin) is dualizable in Catst∞ with dual

Fun(K,Spfin)op = Fun(Kop,Spfin) (see for example [HSS17, Section 4.3]); the coevaluation is given by

coev : Spfin → Fun(Kop,Spfin)⊗ Fun(K,Spfin) ≃ Fun(Kop ×K,Spfin), 1 7→ Σ∞
+ MapK(−,−).

Consider the symmetric pairing

λ : Fun(K,Spfin)⊗ Fun(K,Spfin)
⊗−→ Fun(K, Spfin)

colim−−−→ Spfin.

By duality, it induces an exact functor

D = (id⊗ λ) ◦ (coev ⊗ id) : Fun(K,Spfin)→ Fun(Kop,Spfin),

which is explicitly given by the formula

D(F )(x) = colim
y∈K

MapK(x, y)⊗ F (y) = colim
y∈Kx/

F (y).

Here, the second equality is obtained by decomposing the colimit over Kx/ along the cocartesian fibration
Kx/ → K with fibers MapK(x,−).

Let us further assume that (Fun(K,Spfin), colim) is a Frobenius algebra in Catst∞, i.e., that the above
pairing λ is nondegenerate. Then D is an isomorphism satisfying D = D∨. For a morphism f between
dualizable objects in Catst∞, the dual morphism f∨ is left adjoint to fop, hence is equal to (fop)−1 when
f is an isomorphism. We therefore have D−1 = Dop. Tensoring D with any C ∈ Catst∞, we obtain an
isomorphism

DC : Fun(K,C)
∼−→ Fun(Kop,C)



12 TONI ANNALA, MARC HOYOIS, AND RYOMEI IWASA

such that D−1
C = Dop

Cop . Thus, for F ∈ Fun(K,C) and G ∈ Fun(Kop,C), we have the desired formulas

DC(F )(x) = colim
y∈Kx/

F (y),

D−1
C (G)(x) = lim

y∈(Kx/)op
G(y).

It remains to show that (Fun(P,Spfin), colim) is a Frobenius algebra in Catst∞. Passage to opposite

categories is a symmetric monoidal automorphism of Catst∞, sending the pair (Fun(P,Spfin), colim) to the

pair (Fun(P op,Spfin), lim). But the latter is a Frobenius algebra by [Aok22, Example 1.10], since P op is
the face poset of a simplex. □

Proposition 3.6. There is a canonical isomorphism B(E) ≃ B∨(E) over
∏
i∈I P(Ei ⊕ O). In particular,

both maps ∏
i∈I

P(Ei ⊕ O)
bΠ←− B(E) bP−→ P

(⊕
i∈I Ei ⊕ O

)
are sequences of smooth blowups, as described in Propositions 3.3 and 3.4

Proof. Given a point (LJ , φJ)J of B(E), we set

MK = lim
∅ ̸=J⊂K

LJ

for K nonempty, where the limit is computed in the stable ∞-category of quasi-coherent sheaves. The
sheaf MK is then locally isomorphic to Li with i ∈ K. Indeed, using the notation from Proposition 3.3,
we have MI = L>∅, and we can reduce to the case K = I using the forgetful map B(E) → B(E|K).
Moreover, we have a compatible family of maps ψK : MK →

⊕
i∈K Li, which are universally injective

(since they locally identify MK with some Li). This defines a map B(E)→ B∨(E).
Conversely, given a point (MK , ψK)K of B∨(E), we set L∅ = O and

LJ = colim
∅̸=K⊂J

MK

for J nonempty, where the colimit is computed in the stable∞-category of quasi-coherent sheaves. Since
(MK)K is a diagram under O, we obtain a factorization⊕

i∈J(Ei ⊕ O)
⊕

i∈J Li

⊕
i∈J Ei ⊕ O LJ .

∇
φJ

Using Proposition 3.4 and the forgetful map B∨(E) → B∨(E|J), we see as above that LJ is locally
isomorphic to Li with i ∈ J , so that the right vertical map and hence φJ are surjective. This defines a
map B∨(E)→ B(E).

The fact that these constructions are inverse to one another follows from Lemma 3.5. □

We now define a relative strict normal crossings divisor ∂B(E) on B(E) as follows. For any J ⫋ I, let
EJ ⊂ B(E) be the zero locus of LJ → L>J . Dually, for any nonempty K ⊂ I, let E∨

K ⊂ B∨(E) be the zero
locus of M>K → MK . Under the isomorphism B(E) ≃ B∨(E) of Proposition 3.6, we have EJ = E∨

I−J .

We then let ∂B(E) consist of the 2|I| − 1 smooth components EJ , or equivalently of the 2|I| − 1 smooth

components E∨
K . The morphisms bP and bΠ are then morphisms in Smsncd

S , and it follows from repeated
applications of Proposition 2.7 that they both induce isomorphisms in Pebu(SmS)∗ after collapsing the
boundary divisors (in fact, they both induce pushout squares in Pebu(SmS) prior to quotienting). This
completes the construction of the zigzag (3.1). In particular, the pointed presheaves∧

i∈I
ThS(Ei) and ThS

(⊕
i∈I Ei

)
become isomorphic in Pebu(SmS)∗.

Corollary 3.7. Let E be a finite locally free sheaf on S. Then ThS(E) is invertible in the symmetric
monoidal ∞-category SpP1(PZar,ebu(SmS)∗).

Proof. The assignment S 7→ SpP1(PZar,ebu(SmS)∗) is a Zariski sheaf of symmetric monoidal∞-categories.
Since the functor Pic : CAlg(Cat∞) → Sp≥0 preserves limits, the assertion that ThS(E) is invertible is
Zariski-local on S. We may thus assume that E = On. In this case, the above construction gives a zigzag
of isomorphisms between ThS(O

n) and ThS(O)
⊗n = (P1)⊗n, which is invertible. □
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The construction E 7→ B(E) is evidently functorial in the family E ∈ Vectepi(S)I as well as in the
base scheme S. We now examine its functoriality in the indexing set I. For a morphism of finite sets
α : I → J , let us consider more generally

B(E, α) =
∏
j∈J

B(E|α−1(j)) ∈ Smsncd
S .

The points of B(E, α) are thus families of invertible quotients φA :
⊕

i∈A Ei ⊕ O ↠ LA with A ⊂ α−1(j)
and j ∈ J , such that if A′ ⊂ A then the restriction of φA to the domain of φA′ factors through φA′ .
Consider a morphism

I K

J L

γ

α β

δ

from α to β in the twisted arrow category Tw(Fin). For every l ∈ L and B ⊂ β−1(l), we then have

γ−1(B) ⊂ α−1(δ(j)). We therefore have a well-defined morphism in Smsncd
S :

(3.8) B(E, α)→ B(γ⊕E, β),
(
(φA)A⊂α−1(j)

)
j∈J 7→

(
(φγ−1(B))B⊂β−1(l)

)
l∈L .

The span (3.1) is a special case of this functoriality, applied to the span in Tw(Fin)

(I → I)← (I → ∗)→ (∗ → ∗).
Since bΠ and bP are Lebu-equivalences, it follows from 2-out-of-3 that all maps (3.8) are Lebu-equivalences.
In particular, for any iterated decomposition I = I0 → · · · → In = ∗ of the finite set I, we have a

refinement of (3.1) to a diagram of Lebu-equivalences Tw(∆n) → Smsncd
S . For example, for I

α→ J → ∗
we get the diagram

(3.9)

B(E)

∏
j∈J B(E|α−1(j)) B(α⊕E)

∏
i∈I P(Ei ⊕ O)

∏
j∈J P

(⊕
i∈α−1(j) Ei ⊕ O

)
P
(⊕

i∈I Ei ⊕ O
)
.

We now explain how to equip the functor

ThS : Vectepi(S)op → Pebu(SmS)∗

with a symmetric monoidal structure, which is moreover natural in S.4 Both S 7→ Vectepi(S)op and
S 7→ Pebu(SmS)∗ are functors from Schop to CAlg(Cat∞). We let Vectepi,op,⊗ and Pebu(Sm)⊗∗ denote
the total spaces of the corresponding cocartesian fibrations over Schop × Fin∗. Our goal is thus to
construct a functor

(3.10) Th: Vectepi,op,⊗ → Pebu(Sm)⊗∗

over Schop × Fin∗, whose value on a triple (S, I+, (Ei)i∈I) is (S, I+, (ThS(Ei))i∈I).
To give an idea of what is involved, let us consider the desired effect of the functor (3.10) on morphisms.

A morphism from (S, I+, (Ei)i∈I) to (T, J+, (Fj)j∈J) in Vectepi,op,⊗ consists of

S
f← T, I+

α→ J+,
(⊕

α(i)=j f
∗(Ei)

φj

↞ Fj

)
j∈J

.

We assign to it the J-indexed family of morphism
∧
α(i)=j f

∗(ThS(Ei))→ ThT (Fj), given by precompos-

ing Th(φj) : ThT (
⊕

α(i)=j f
∗(Ei))→ ThT (Fj) with f

∗ of the span of Lebu-equivalences∧
α(i)=j

ThS(Ei)← B((Ei)α(i)=j)/∂B→ ThS

(⊕
α(i)=j Ei

)
.

To explain the construction of (3.10) in full, we need a brief categorical digression.
Given an ∞-category E with two classes of morphisms L and R closed under composition, we denote

by Λ(E,L,R) the simplicial anima whose n-simplices are diagrams Tw(∆n)→ E sending (∆n)op to L and
∆n to R (when the classes L and R are stable under base change along one another, the usual complete

4For our applications in this paper, we only need the functor ThS on the maximal subgroupoid Vect(S) ⊂ Vectepi(S),

but this does not simplify the construction.
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Segal anima of spans Span(E,L,R) is the subobject of Λ(E,L,R) consisting of cartesian diagrams). We
denote by N: Cat∞ ↪→ Fun(∆op,Ani) the fully faithful functor given by N(C) = Λ(C, iso, all), which
identifies ∞-categories with complete Segal anima.

Let now p : E → C be a cocartesian fibration. If p∨ : E∨ → Cop is the cartesian fibration classifying
the same functor C→ Cat∞ as p, there is by [BGN18, Theorem 1.4] a canonical isomorphism

Λ(E∨, cart, vert) = Span(E∨, cart, vert) ≃ N(E)

where “cart” and “vert” denote the orthogonal classes of cartesian and vertical morphisms, such that
the following diagram commute:

Λ(E∨, cart, vert) N(E)

Λ(E∨, all, vert) Λ(Cop, all, iso) = N(C).

∼

p

p∨

Our strategy is now to define a morphism of simplicial anima

(3.11) N(Vectepi,op,⊗)→ Λ((Smsncd,⊗)∨, all, vert)

over N(Schop × Fin∗) such that the composite

N(Vectepi,op,⊗)→ Λ((Smsncd,⊗)∨, all, vert)→ Λ((Pebu(Sm)⊗∗ )
∨, all, vert)

lands in the subobject Λ((Pebu(Sm)⊗∗ )
∨, cart, vert) ≃ N(Pebu(Sm)⊗∗ ). Since this isomorphism commutes

with the maps to N(Schop×Fin∗) and the functor N is fully faithful, this yields the desired functor (3.10).
The construction of (3.11) is straightforward using the already established functoriality of the con-

struction B. To keep the notation reasonable, we only spell out the map (3.11) on 2-simplices, but
the general case is similar and the simplicial structure will be apparent. A 2-simplex of N(Vectepi,op,⊗)
consists of

S
f←− T g←− U, I+

α−→ J+
β−→ K+,

(⊕
α(i)=j f

∗(Ei)
φj

↞ Fj

)
j∈J

,
(⊕

β(j)=k g
∗(Fj)

ψk

↞ Gk

)
k∈K

.

The corresponding 2-simplex Tw(∆2)→ (Smsncd,⊗)∨ is as follows:

(P(Ei ⊕ O))i∈I (B(f∗E|α−1(j)))j∈J (B(g∗f∗E|(β◦α)−1(k)))k∈K

(P(Fj ⊕ O))j∈J (B(g∗F|β−1(k)))k∈K

(P(Gk ⊕ O))k∈K ,

bΠ

φ◦bP

bΠ

ψ◦bP

where the three columns lie in the fibers over (S, I+), (T, J+), and (U,K+), respectively. The fiber of
this diagram over k ∈ K is the diagram (3.9) for the family of sheaves (g∗f∗Ei)i∈(β◦α)−1(k) and the

decomposition (β ◦α)−1(k)→ β−1(k)→ {k}. The fact that the maps (3.8) are Lebu-equivalences implies
that the horizontal maps become cartesian in (Pebu(Sm)⊗∗ )

∨. This yields the desired morphism (3.11),
hence the desired functor (3.10).

4. Projective bundle homotopy invariance

Let S be a derived scheme. We shall write

MSS = SpP1(PZar,ebu(SmS ,Sp))

and refer to objects of MSS as motivic spectra over S. We shall also write

MSunS = SpP1(PZar,ebu(SmS)∗)

for the unstable version of MSS , so that MSS = Sp(MSunS ). There are symmetric monoidal left adjoint
functors

P(SmS) P(SmS)∗ MSunS MSS .
(−)+ Σ∞

P1

Σ∞
P1

Σ∞

As is customary, we will often omit the functors Σ∞
P1 and Σ∞

P1(−)+ from the notation, identifying objects
in P(SmS)∗ and in P(SmS) with their images in MSunS or in MSS . The symmetric monoidal ∞-category
MSunS was denoted by SpP1(StexS ) in [AI23]. We will show below that MSS is equivalent to the full
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subcategory of fundamental objects in MSunS (Corollary 4.13), which was denoted by SpP1(StexS )fd in loc.
cit., but this is not at all obvious from the definitions.

Of course, we do not claim that MSS is “the” ∞-category of motivic spectra, which we expect to
be a further localization thereof (enforcing in particular Nisnevich descent, and hence smooth blowup
excision by Proposition 2.2). Rather, MSS is the minimal construction to which all the results of this
paper apply. Note that the full subcategory of either MSS or MSunS consisting of A1-invariant Nisnevich
sheaves is the Morel–Voevodsky stable A1-homotopy ∞-category over S (since smooth blowup excision
holds in the latter [MV99, Section 3, Remark 2.30]). We will occasionally denote by LA1 the localization
onto this full subcategory.

We note the following facts (and analogous ones for MSunS ):

• The presheaf of ∞-categories S 7→ MSS satisfies Zariski descent.

• If S is qcqs and X ∈ Smfp
S , then Σ∞

P1X+ ∈ MSS is compact. In particular, if S is qcqs, then the
∞-category MSS is compactly generated.

• If S is the limit of a cofiltered diagram of derived schemes Sα with affine transition maps, then
MSS = limαMSSα .

Theorem 4.1. Let E be a finite locally free sheaf on X ∈ P(SmS) and let σ : E→ OX be a linear map.

(i) (Euler class of locally free sheaves) There is a canonical homotopy h̄(σ) in MSunS between

X+
σ−→ V(E)+ ⊂ P(E⊕ OX)+ → ThX(E)

and the zero section.
(ii) (P-homotopy invariance) There is a canonical homotopy h(σ) in (MSS)/X between

X
σ−→ V(E) ⊂ P(E⊕ OX)

and the zero section.

Moreover, the homotopies h̄(σ) and h(σ) are functorial in (S,X,E, σ), and they are the identity when
σ = 0.

Proof. We may assume X = S, as the general case then follows formally from the functoriality in (S,E, σ).
The matrix

e21(σ) =

(
idE 0
σ idO

)
∈ Aut(E⊕ O)

induces an automorphism e of P(E⊕O) sending the zero section to that induced by σ. Moreover, e fixes
P(E) and hence induces an automorphism ē of the Thom space ThS(E). To prove (i) (resp. (ii)), it will
therefore suffice to show that ē (resp. e) is homotopic to the identity in MSunS (resp. in (MSS)/S).

To prove that ē is homotopic to the identity, we choose a factorization

E
φ−→ F

τ−→ O

of σ (to get a functorial construction we can take for example F = E, φ = id, and τ = σ, but it will be
useful to distinguish between E and F in the notation). We will construct more precisely a homotopy
in SpT (Pebu(SmS)∗), where T = ThS(E ⊕ F) (this is sufficient by Corollary 3.7). Consider the span of
Lebu-equivalences

ThS(E) ∧ ThS(F)← B/∂B → ThS(E⊕ F),

where B = B(E,F) is the blowup of P(E⊕F⊕O) at P(E)⊔ P(F), or equivalently of P(E⊕O)× P(F⊕O)
at P(E)× P(F). The matrix

e31(σ) =

idE 0 0
0 idF 0
σ 0 idO

 ∈ Aut(E⊕ F ⊕ O)

induces an automorphism e′ of P(E⊕ F⊕O), fixing P(E⊕ F) and thereby inducing an automorphism ē′

of ThS(E⊕F). It also induces an automorphism e′′ of the blowup B, since it fixes the center P(E)⊔P(F),
which preserves the boundary ∂B and hence descends to an automorphism ē′′ of the quotient B/∂B. We
then have a commutative diagram of pointed presheaves

ThS(E) ∧ ThS(F) B/∂B ThS(E⊕ F)

ThS(E) ∧ ThS(F) B/∂B ThS(E⊕ F).

ē∧id ē′′ ē′
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Since the horizontal maps are Lebu-equivalences, it suffices to show that ē′ becomes homotopic to the
identity in SpT (Pebu(SmS)∗). In Aut(E⊕ F ⊕ O) we have the commutator relation

e31(σ) = [e32(τ), e21(φ)].

Since any lower unitriangular matrix fixes P(E⊕F) and hence induces an automorphism of ThS(E⊕F),
we deduce that ē′ is a commutator in the monoid of endomorphisms of ThS(E ⊕ F). However, the
object ThS(E⊕ F) is invertible in the symmetric monoidal ∞-category SpT (Pebu(SmS)∗), so its monoid
of endomorphisms has a canonical structure of E∞-monoid. The above commutator relation therefore
induces a canonical identification of ē′ with the identity.

We now show that e itself is stably homotopic over S to the identity, in fact that it becomes so
after a single suspension in SpT (Pebu(SmS)∗). Since e restricts to the identity on P(E), it induces an
automorphism of cofiber sequences

P(E⊕ O)+ ThS(E) Σ(P(E)+)

P(E⊕ O)+ ThS(E) Σ(P(E)+).

e ē

δ

id

δ

Applying the cofiber functor to the endomorphism (ē, id) of δ, we obtain the endomorphism Σ(e+)
of Σ(P(E ⊕ O)+). We will show that the homotopy between ē and the identity in SpT (Pebu(SmS)∗)
constructed above can be promoted to a homotopy in the slice category over Σ(P(E)+). This will in
particular give a homotopy between the endomorphism (ē, id) of δ and the identity in the slice of the
arrow category over the arrow ∗ → Σ(S+). Taking the cofiber, we will thus obtain a homotopy over
Σ(S+) between Σ(e+) and the identity.

Let us first explain the categorical aspects of the argument. Consider

Y = Σ(P(E)+)⊗ ThS(E)
−1 ∈ SpT (Pebu(SmS)∗),

so that we may view δ as a morphism δ : 1→ Y . The homotopy between ē and the identity comes from
writing ē as a commutator [a, b] of two automorphisms of 1. We will promote b to an automorphism over
Y and show that ē over Y can be decomposed as follows:

1 1 1 1 1

Y Y Y Y Y ,

a

δ

ē

b

δ

a−1

δ

b−1

δ δ

a

id

a−1

where the first and third squares commute via the 1-module structure of δ and the lower cell commutes
canonically. On the other hand, there is a commutative cube

Y ⊗ 1 Y ⊗ 1

1⊗ 1 1⊗ 1

Y ⊗ 1 Y ⊗ 1,

1⊗ 1 1⊗ 1

id⊗a

id⊗a

b⊗id

δ⊗id δ⊗id

id⊗a

δ⊗id

b⊗id

δ⊗id

where the left and right faces are given by b over Y and the morphism between them is multiplication
by a. This cube provides an identification between the commutator [a, b] and the identity in the slice
category over Y . Thus, it will suffice to decompose ē as above.

To that end let

B′ = BlP(E)P(E⊕ F ⊕ O) and ∂B′ = BlP(E)P(E⊕ F) ∪ E,

where E = P(E)× P(F ⊕ O) is the exceptional divisor. By Proposition 2.7, we have Lebu-equivalences

ThS(E) ∧ ThS(F)← B/∂B → B′/∂B′ → ThS(E⊕ F).
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The point is that the homotopy between ē∧ idTh(F) and the identity was obtained from a commutator of
two automorphisms of ThS(E⊕F), but the morphism of pointed presheaves δ∧ idTh(F) does not descend
to ThS(E ⊕ F). It does however descend to B′/∂B′, while at the same time the two automorphisms of
ThS(E⊕ F) lift to B′/∂B′.

Indeed, there is a commutative square of pointed presheaves

ThS(E) ∧ ThS(F) B/∂B

Σ(P(E)+) ∧ ThS(F) B′/∂B′,

δ∧id

δ′

which identifies δ∧ id with δ′ in (Pebu(SmS)∗)/Σ(P(E)+)∧ThS(F). This square is the cofiber of the following
cube in P(SmS):

(P(E⊕ O)+ × P(F)) ∪ (P(E)+ × P(F ⊕ O)) ∂B

P(E⊕ O)+ × P(F ⊕ O) B

P(F) ⊔P(E)+×P(F) (P(E)+ × P(F ⊕ O)) ∂B′

P(F ⊕ O) B′.

π2

The bottom face of this cube is functorial with respect to lower unitriangular matrices in Aut(E⊕F⊕O),
while the whole cube is functorial with respect to the subgroup Hom(E,O) ⊕ Hom(F,O). In particular,
the matrices e31(σ) and e32(τ) induce automorphisms of the cube, and the matrix e21(φ) induces an
automorphism of the bottom face. The given automorphism ē ∧ id of δ ∧ id is induced by the matrix
e31(σ), which acts by the identity on the lower left edge of the cube. We now claim that the commutator
relation e31(σ) = [e32(τ), e21(φ)] gives the desired decomposition of ē ∧ id. Indeed, the matrix e21(φ)
acts by the identity on the lower left edge of the cube. Moreover, the automorphism of δ ∧ id induced
by e32(τ) is

ThS(E) ∧ ThS(F) Σ(P(E)+) ∧ ThS(F)

ThS(E) ∧ ThS(F) Σ(P(E)+) ∧ ThS(F),

id∧f̄

δ∧id

id∧f̄

δ∧id

where f̄ is given by the matrix e21(τ) ∈ Aut(F ⊕ O), so it is multiplication by an automorphism of 1 in
SpT (Pebu(SmS)∗), as desired. □

Remark 4.2. The main results of this paper only use the rank 1 case of Theorem 4.1(ii), which is
significantly easier to prove. Indeed, when L is an invertible sheaf on S, the cofiber sequence

S+ = P(L)+ → P(L⊕ O)+ → ThS(L)

is split by the structure map P(L ⊕ O)+ → S+. This yields a canonical decomposition P(L ⊕ OS)+ ≃
1⊕ ThS(L) in the stable ∞-category P(SmS ,Sp), under which e = id⊕ ē (since e commutes with both
the inclusion S = P(L) ↪→ P(L⊕ O) and its retraction). Thus, e is homotopic to the identity if ē is.

Definition 4.3 (P1-homotopy). Let C be an ∞-category tensored over Smfp
Z , and let f, g : X → Y be

morphisms in C. A P1-homotopy between f and g is a morphism h : P1 ⊗X → Y making the following
diagram commute:

∗ ⊗X X

P1 ⊗X Y

∗ ⊗X X.

∼

0⊗id f

h

1⊗id

∼

g

Corollary 4.4 (P1-homotopy invariance). In SpP1(Pebu(SmS ,Sp)) and hence in MSS, P1-homotopic
morphisms are homotopic.
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Proof. This follows directly from Theorem 4.1(ii), which implies that the two maps 0, 1: S → A1 ⊂ P1

are homotopic (noting that the proof does not use Zariski descent in this case). □

Corollary 4.5 (Euler class of trivial bundles). Let E be a finite locally free sheaf on X ∈ P(SmS). If
there exists an epimorphism E ↠ O, then the pointed map X+ → ThX(E) induced by the zero section
becomes nullhomotopic in SpP1(Pebu(SmS ,Sp)) and hence in MSS.

Proof. We may assume E = O, since the given map for E factors through the one for O. By Corollary 4.4,
the zero section and the section at infinity S+ → P1

+ become homotopic in SpP1(Pebu(SmS ,Sp)), but the
latter is nullhomotopic when composed with the quotient map P1

+ → P1/∞ = ThS(O). □

Definition 4.6 (Weighted A1-homotopy). Let C be an∞-category tensored over Smfp
Z , and let f, g : X →

Y be morphisms in C. A weighted A1-homotopy or A1/Gm-homotopy from f to g is a Gm-equivariant
morphism h : A1 ⊗X → Y , where Gm acts on A1 with weight 1 and trivially on X and Y , making the
following diagram commute:

∗ ⊗X X

A1 ⊗X Y

∗ ⊗X X.

∼

0⊗id f

h

1⊗id

∼

g

Remark 4.7. For n ∈ Z, let A1(n) denote the quotient A1/Gm where Gm acts with weight n. We can
then define an A1(n)-homotopy in the obvious way. However, the resulting homotopy relations fall in
only two classes:

• If n = 0, two morphisms are A1(0)-homotopic if and only if they are A1-homotopic.
• If n ̸= 0, two morphisms are A1(n)-homotopic if and only if they are A1(1)-homotopic (and they

are then also A1-homotopic). Indeed, for any m ∈ Z, there is a map

A1(m)→ A1(n), t 7→ t|n|,

sending 0 to 0 and 1 to 1.

Corollary 4.8 (Weighted A1-homotopy invariance). In MSS, A1/Gm-homotopic morphisms are homo-
topic.

Proof. In PZar(SmS), there is a map P1 → A1/Gm sending 0 to 0 and 1 to 1 (classifying the effective
Cartier divisor 0 ∈ P1). The claim now follows from Corollary 4.4. □

Proposition 4.9. Let E and F be finite locally free sheaves on X ∈ P(SmS). Then the triangle

P(E⊕ F)− P(F)

P(E) P(E⊕ F)

π

commutes up to homotopy in (MSS)P(E)//X .

Proof. We define a P-homotopy

h : PP(E⊕F)−P(F)(F(−1)⊕ O)→ P(E⊕ F)

as follows. A point in the source is an invertible quotient φ : E⊕ F ↠ L such that φ|E is still surjective
and a further invertible quotient ψ : F ⊗ L∨ ⊕ O ↠ M. We send this to the quotient

E⊕ F
φ|E⊕id−−−−→ L⊕ F

ψ−→ L⊗M.

If we precompose h with the zero section

P(E⊕ F)− P(F) ↪→ VP(E⊕F)−P(F)(F(−1)),

we get the lower composite in the given triangle. The diagonal map is obtained via the other canonical

section, which sends φ : E⊕ F ↠ L to F⊗L∨ ↪→ (E⊕ F)⊗L∨ φ−→ O. Note that this section agrees with
the zero section when restricted to P(E). By Theorem 4.1(ii), h provides the desired homotopy under
P(E) and over X. □
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Corollary 4.10. Let E and F be finite locally free sheaves on X ∈ P(SmS), and let σ, τ : F → E be linear
maps. Then the linear embeddings P(E) ↪→ P(E⊕ F) induced by σ and τ become homotopic in (MSS)/X .
In particular, any two linear embeddings Pm ↪→ Pn become homotopic.

Proof. This follows from Proposition 4.9, since any linear map F → E induces a section of π. □

Corollary 4.11. Let F be a finite locally free sheaf on X ∈ P(SmS). Then the embedding V(F) ↪→
P(F ⊕ O) becomes homotopic to the constant map V(F)→ X

0−→ P(F ⊕ O) in (MSS)X//X .

Proof. This is the special case of Proposition 4.9 with E = O. □

Proposition 4.12 (Bass fundamental theorem). The canonical map

∂ : (P1, 1)→ Σ(Gm, 1)

in PZar(SmS)∗ admits a retraction in MSS.

Proof. The map ∂ is the cofiber of (P1−{∞}, 1)∨(P1−{0}, 1)→ (P1, 1). By symmetry, it suffices to show
that the inclusion (A1, 0)→ (P1, 0) is nullhomotopic. Since MSS is stable, this inclusion decomposes as
(A1, 0)→ A1

+ → P1
+ → (P1, 0), and the map A1

+ → (P1, 0) is nullhomotopic by Corollary 4.11. □

Let V be tensored over PZar(SmS)∗. Recall that an object E ∈ V is fundamental if the map

∂ ⊗ idE : (P1, 1)⊗ E → Σ(Gm, 1)⊗ E

admits a retraction [AI23, Definition 2.3.2]. We write Vfd ⊂ V for the full subcategory spanned by the
fundamental objects.

Corollary 4.13 (Bass delooping). Let V be presentably tensored over MSunS .

(i) The adjunction

Σ∞ : V ⇄ Sp(V) : Ω∞

is a smashing localization, i.e., Ω∞ is fully faithful and Ω∞Σ∞ is given by tensoring with
Ω∞Σ∞1 ∈ MSunS . Moreover, the essential image of Ω∞ is contained in Vfd.

(ii) Suppose that V⊗MSun
S

MSunU is compactly generated for every qcqs open subscheme U ⊂ S. Then

Ω∞ induces an isomorphism Sp(V) ≃ Vfd. In particular, Vfd is stable and presentable.

Proof. The functor Ω∞ is a priori lax MSunS -linear und commutes with ΣP1 , hence preserves fundamental
objects. By Proposition 4.12, every object of Sp(V) is fundamental. Assertion (ii) now follows from [AI23,
Theorem 2.4.5] when S is qcqs, and by descent in general. In this case, it is clear that the localization
is smashing by definition of “fundamental”. In particular, (i) holds for V = MSunS , hence for arbitrary V

by tensoring. □

The following proposition is an adaptation of a result by Panin and Smirnov [Pan03, Lemma 3.8],
which is crucial to proving the orientability of MGL in A1-homotopy theory:

Proposition 4.14 (Euler class of O(1)). Let Y = PP1(O(1) ⊕ O), let s0 : P1 ↪→ Y be the zero section,
and let i : P1 ↪→ Y be the inclusion of the fiber at ∞ ∈ P1. Let q : Y+ → ThP1(O(1)) be the quotient map.
In MSS, we have the following relation:

q ◦ s0 ≃ −q ◦ i : P1
+ → ThP1(O(1)).

Proof. Let p : Y → P1 and r : P1 → S be the structure maps, let s∞ : P1 ↪→ Y be the section at infinity
(whose cofiber is q), and let b : Y → P2 be a map exhibiting Y as the blowup of P2 in one point, with
exceptional divisor s0(P1). Consider the map

y = id− s0 ◦ p : Y+ → Y+.

Then y ◦ s0 ≃ 0. By elementary blowup excision, y descends to a map ȳ : P2
+ → Y+. By Corollary 4.10,

any two linear embeddings of P1 in P2 are homotopic, so that b ◦ i ≃ b ◦ s∞. Composing with ȳ, we get
y ◦ i ≃ y ◦ s∞. Now:

q ◦ s0 ≃ q ◦ (s0 − s∞) ≃ −q ◦ y ◦ s∞ ≃ −q ◦ y ◦ i ≃ −q ◦ (i− s0 ◦ p ◦ i) ≃ −q ◦ i+ q ◦ s0 ◦∞ ◦ r.

To conclude, we show that q ◦ s0 ◦ ∞ is nullhomotopic. Since 0,∞ : S+ → P1
+ are homotopic by Corol-

lary 4.4, we have s0 ◦∞ ≃ i ◦ 0 ≃ i ◦∞ ≃ s∞ ◦∞. Since q ◦ s∞ ≃ 0, the claim is proved. □
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5. Grassmannians and the stack of vector bundles

Given finite locally free sheaves E and F, we denote by V(E,F) the vector bundle parametrizing linear
maps E→ F, and by St(E,F) the open subscheme parametrizing surjections E ↠ F. When F = On, this
is the usual Stiefel variety Stn(E).

Proposition 5.1 (Infinite excision). Let E and F be finite locally free sheaves on X ∈ P(SmS) such that
there exists an epimorphism χ : Em ↠ F for some m ≥ 0. Then the open embedding of ind-X-schemes

St(E∞,F) ↪→ V(E∞,F)

becomes an isomorphism in MSS.

Proof. We may assume rkF ≥ 1, as the assertion is trivial over the summand of X where F has rank 0.
We consider the compactification V(Ek,F) ⊂ P(Ek⊗F∨⊕O). Let Zk ⊂ P(Ek⊗F∨⊕O) be the closure of
the complement of St(Ek,F) in V(Ek,F) and let ∂Zk = Zk ∩ P(Ek ⊗ F∨). We then have for every k ≥ 0
a Zariski pushout square

St(Ek,F) V(Ek,F)

P(Ek ⊗ F∨ ⊕ O)− Zk P(Ek ⊗ F∨ ⊕ O)− ∂Zk.
ik

By Zariski descent and stability, it therefore suffices to prove that the sequence of open embeddings ik
induces an isomorphism in the colimit as k → ∞. To do so we will construct a diagonal map in the
square

P(Ek ⊗ F∨ ⊕ O)− Zk P(Ek+m ⊗ F∨ ⊕ O)− Zk+m

P(Ek ⊗ F∨ ⊕ O)− ∂Zk P(Ek+m ⊗ F∨ ⊕ O)− ∂Zk+m

ek

ik ik+m

ek

fk

and homotopies making both triangles commute, such that the composite homotopy is the identity.5 Let

fk : P(Ek ⊗ F∨ ⊕ O)→ P(Ek+m ⊗ F∨ ⊕ O)

be the closed immersion induced by the epimorphism

(Ek+m ⊗ F∨)⊕ O
χ−→ (Ek ⊗ F∨)⊕ (F ⊗ F∨)⊕ O

ev−→ (Ek ⊗ F∨)⊕ O⊕ O
+−→ (Ek ⊗ F∨)⊕ O.

We define a P-homotopy

hk : PP(Ek⊗F∨⊕O)(O(−1)⊕ O)→ P(Ek+m ⊗ F∨ ⊕ O)

as follows. A point in the left-hand side is a pair of invertible quotients φ : Ek ⊗ F∨ ⊕ O ↠ L and
ψ : L∨ ⊕ O ↠ M. We send this point to the invertible quotient

(Em ⊗ F∨)⊕ (Ek ⊗ F∨)⊕ O
φ−→ (Em ⊗ F∨)⊕ L

ev◦χ−−−→ O⊕ L
ψ⊗idL−−−−→M⊗ L

(here we used that rkF ≥ 1, so that the evaluation map F ⊗ F∨ → O is surjective). Considering the
canonical section and the zero section of the vector bundle V(O(−1)) over P(Ek ⊗F∨ ⊕O) and applying
Theorem 4.1(ii), we see that hk defines a homotopy between fk and the standard embedding ek. It
remains to prove the following three statements:

(i) The restriction of fk to P(Ek ⊗ F∨ ⊕ O)− ∂Zk lands in P(Ek+m ⊗ F∨ ⊕ O)− Zk+m.
(ii) The restriction of hk to P(Ek ⊗ F∨ ⊕ O)− Zk lands in P(Ek+m ⊗ F∨ ⊕ O)− Zk+m.
(iii) The restriction of hk to P(Ek ⊗ F∨ ⊕ O)− ∂Zk lands in P(Ek+m ⊗ F∨ ⊕ O)− ∂Zk+m.

The complement of Zk classifies invertible quotients φ : Ek ⊗ F∨ ⊕ O ↠ L such that the induced map
φ♭ : Ek → F⊗L is surjective, and the complement of ∂Zk is the union of the latter with V(Ek,F), which
is the locus where φ|O is surjective (i.e., an isomorphism).

For a pair (φ,ψ) as above, the map hk(φ,ψ)
♭ is the composite

Em ⊕ Ek
χ−→ F ⊕ Ek

φ♭

−→ F ⊗ (O⊕ L)
idF⊗ψ⊗idL−−−−−−−−→ F ⊗M⊗ L,

and the map fk(φ)
♭ is the special case with ψ ⊗ idL = φ|O + idL : O⊕ L ↠ L. Since ψ and χ : Em → F

are surjective, this composite is surjective if either φ♭ is surjective or if ψ|L∨ is surjective, which proves

5If S is qcqs (which does not restrict the generality), we do not actually need this last condition, since MSS admits a
conservative filtered-colimit-preserving functor to a 1-category. However, our construction does satisfy this condition and

shows that the sequence of morphisms ik is an isomorphism of ind-objects in any context with P-homotopy invariance.
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(i) and (ii). To prove (iii), it remains to show that hk sends V(Ek,F) to the complement of ∂Zk+m. Since
the loci where ψ|L∨ and ψ|O are surjective form an open covering of P(O(−1)⊕ O), and the case where
ψ|L∨ is surjective is already established, we may assume that ψ|O is surjective. But when both φ|O and
ψ|O are surjective, the map hk(φ,ψ)|O is surjective, i.e., hk(φ,ψ) belongs to V(Ek+m,F). □

Lemma 5.2. Let X ∈ P(SchS), let G be a group object in P(SchS)/X containing Gm as a subgroup, and
let E be a finite locally free representation of G over X such that Gm acts with constant nonzero weight.
Then the canonical map

VX(E)/G→ BG

is a weighted A1-homotopy equivalence. In particular, it becomes an isomorphism in MSS.

Proof. If Gm acts on E with weight n, then the map

A1/Gm × VX(E)/G→ VX(E)/G, (t, v) 7→ t|n|v,

is an A1/Gm-homotopy from the zero map to the identity. The last claim follows from Corollary 4.8. □

Theorem 5.3 (Geometric model of the stack of vector bundles). Let E be a finite locally free sheaf on
S admitting an epimorphism E ↠ O. Then, for every n ≥ 0, the canonical map

Grn(E
∞)→ BGLn = Vectn

becomes an isomorphism in MSS.

Proof. This map can be decomposed as

Stn(E
∞)/GLn → V(E∞,On)/GLn → BGLn.

The first map is the simplicial colimit of Stn(E
∞) × GL•

n → V(E∞,On) × GL•
n, hence becomes an

isomorphism in MSS by Proposition 5.1. The second map is the sequential colimit over k of the maps
V(Ek,On)/GLn → BGLn, hence becomes an isomorphism in MSS by Lemma 5.2. □

6. Orientations revisited

Let E be an object in MSunS . Recall from [AI23, Section 3.1] that E is orientable if the map

[O(1)]⊗ idE : P1 ⊗ E → Pic⊗ E
admits a retraction, where P1 and Pic are viewed as pointed objects. If E ∈ MSunS is orientable, then
it is fundamental [AI23, Lemma 3.1.7], hence belongs to the full subcategory MSS of stable objects
(Corollary 4.13(ii)). A choice of such a retraction (in the homotopy category) is called an orientation of
E, and we say that E is oriented if an orientation of E is fixed. An orientation of E defines a cohomology
operation c1(L) : Σ

−1
P1 E

X+ → EX+ for every X ∈ P(SmS) and every L ∈ Pic(X), called the first Chern
class of L.

If E ∈ MSunS is orientable and has an algebra structure (in the homotopy category), then we can always
choose an orientation as a right E-linear map. When we say that an algebra object E is oriented, we
will always assume that the orientation is right E-linear. The first Chern class c1(L) : Σ

−1
P1 E

X+ → EX+

is then given by left multiplication with a class c1(L) ∈ E1(X).
Suppose that E ∈ MSunS is oriented. Then E satisfies projective bundle formula by [AI23, Lemma

3.3.5]: for a locally free sheaf E of rank r on X ∈ P(SmS), we have an isomorphism

r−1∑
i=0

c1(O(1))
i :

r−1⊕
i=0

Σ−i
P1E

X+
∼−→ EPX(E)+ .

By naturality of c1, we have a commutative square

EPX(E⊕O)+ EPX(E)+

⊕r
i=0 Σ

−i
P1E

X+
⊕r−1

i=0 Σ−i
P1E

X+ ,

∑
c1(O(1))i ∼

∑
c1(O(1))i∼

where the bottom horizontal map is the inclusion of the first r summands. This induces an isomorphism

t(E) : Σ−r
P1 E

X+
∼−→ EThX(E)

between the cofiber of the lower map and the fiber of the upper map, called the Thom isomorphism.
When E is an algebra, t(E) is right EX+ -linear and can be identified with a class t(E) ∈ Ẽr(ThX(E)),
called the Thom class of E.
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The higher Chern classes ci(E) : Σ
−i
P1E

X+ → EX+ for 0 ≤ i ≤ r are then defined by the formula

(6.1) t(E) =

r∑
i=0

(−1)r−ic1(O(1))i · cr−i(E),

which is to be understood as an equality between maps Σ−r
P1 E

X+ → EP(E⊕O)+ . In particular, if s a global
section of E∨, then the following diagram commutes:

(6.2)

Σ−r
P1 E

X+ EThX(E)

EX+ .

t(E)

cr(E)
(−1)rs∗

Using the isomorphism Vectn ≃ Grn in MSS proved in Theorem 5.3, we can considerably simplify the
proof of the main result of [AI23, Section 4]:

Theorem 6.3 (Oriented cohomology of the stack of vector bundles). Let E be an oriented object in
CAlg(hMSS). Then, for all X ∈ P(SmS) and n ≥ 0, there is an isomorphism of bigraded rings

E∗∗(X ×Vectn) ≃ E∗∗(X)[[c1, . . . , cn]],

where ci ∈ Ei(Vectn) is the ith Chern class of the universal rank n locally free sheaf.

Proof. By Theorem 5.3, this follows from the computation of the oriented cohomology of Grassmannians
as in [AI22, Corollary 4.6]; see also [AI23, Corollary 4.4.5]. This computation only uses Zariski descent,
the projective bundle formula, and the isomorphism Pic ≃ P∞, which is actually a consequence of the
first two as proved in Theorem 5.3. □

Applying Theorem 6.3 with n = 1 and X = Pic yields in the usual way a formal group law over the
graded ring E∗(S). This formal group law computes the first Chern class of the tensor product of two
invertible sheaves on any X ∈ P(SmS) whose image in MSS is compact (this ensures that Chern classes
on X are nilpotent, since Pic ≃ colimn Pn).

Using weighted A1-invariance, we can further compute the oriented cohomology of the stack Bµn of
µn-torsors (i.e., the fppf-local delooping of µn):

Proposition 6.4 (Oriented cohomology of the stack of µn-torsors). Let E ∈ MSS be oriented and let
n ≥ 1. Then there is a cofiber sequence of motivic spectra

Σ−1
P1 E

BGm+
c1(L

⊗n)−−−−−→ EBGm+ → EBµn+ ,

where L is the universal invertible sheaf on BGm = Pic. Hence, if E ∈ CAlg(hMSS) is oriented with
formal group law F , there is for any X ∈ P(SmS) a long exact sequence

· · · → E∗−2,∗−1(X)[[c]]
[n]F−−−→ E∗∗(X)[[c]]→ E∗∗(X × Bµn)→ E∗−1,∗−1(X)[[c]]→ · · · .

Proof. Let P1(n) be the quotient P1/Gm, where Gm acts with weight n on P1. In other words, P1(n) is
the projective bundle PBGm(L⊗n ⊕O). Then P1(n) admits an open cover by the weighted lines A1(±n),
such that A1(n) ∩ A1(−n) ≃ Bµn. Hence, we obtain a cofiber sequence

EP1(n)+ → EA1(n)+ ⊕ EA1(−n)+ → EBµn+ .

Applying the projective bundle formula to EP1(n)+ , the weighted A1-invariance to EA1(±n)+ (Corol-
lary 4.8), and the fact that O(1) restricts to O on A1(n) and L⊗n on A1(−n), we obtain the desired
cofiber sequence. □

Next we prove that an orientation is uniquely recovered from the Thom class of the universal invertible
sheaf. To that end, we introduce the auxiliary notion of Thom orientation. Let L be the universal
invertible sheaf on Pic and ι the canonical map

ι : P1 = Th∗(L|∗)→ ThPic(L).

Definition 6.5 (Thom orientation). We say that E ∈ MSunS is Thom orientable if the map

ι⊗ idE : P1 ⊗ E → ThPic(L)⊗ E

admits a retraction. A choice of such a retraction (in the homotopy category) is called a Thom orientation
of E. We say that E is Thom oriented if a Thom orientation of E is fixed.
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Remark 6.6. If E ∈ MSunS is oriented, then the map ThPic(L)⊗E → P1 ⊗E adjoint to the composite

Σ−1
P1 E → Σ−1

P1 E
Pic+ t(L)−−−→ EThPic(L)

is a Thom orientation of E.

Let s0 be the zero section of VPic(L). Consider the following diagram in P(SmS)∗:

S0 Pic+ Pic

P1 ThPic(L).

s0
s̃0

ι

The left vertical map is canonically nullhomotopic in MSS by Corollary 4.5. Therefore, we obtain a lift
s̃0 in MSS as indicated.

Lemma 6.7. Let E be an object in MSS with a Thom orientation t. Then the composite

Pic⊗ E −s̃0−−→ ThPic(L)⊗ E
t−→ P1 ⊗ E

is an orientation of E.

Proof. Consider the diagram

Pic⊗ E ThPic(L)⊗ E P1 ⊗ E

P1 ⊗ E ThP1(O(1))⊗ E,

−s̃0 t

−s̃0

where the vertical maps are induced by the map P1 → Pic classifying O(1). The goal is to show that
the end-to-end composite is homotopic to the identity. By the definition of Thom orientation, it suffices
to show that the bottom horizontal map −s̃0 is homotopic to the map induced by ι : P1 → ThP1(O(1)).
This follows from Proposition 4.14. □

Let E be an object in MSunS and F the internal hom object Hom(E,E). Then we define Ori(E) to

be the subset of F̃ 1(Pic) consisting of orientations of E, and we define TOri(E) to be the subset of

F̃ 1(ThPic(L)) consisting of Thom orientations of E.

Proposition 6.8. A motivic spectrum E ∈ MSS is orientable if and only if it is Thom orientable. More
precisely, there is a bijection

Ori(E)
∼−→ TOri(E)

given by taking the Thom class of the universal invertible sheaf. Furthermore, if E is an algebra in the
homotopy category, then an orientation of E is E-linear if and only if the corresponding Thom orientation
is E-linear.

Proof. We show that the map Ori(E) → TOri(E) given by taking the Thom class of the universal
invertible sheaf L is a bijection with inverse

−s∗0 : TOri(E)→ Ori(E),

which is well-defined by Lemma 6.7. Given an orientation c = c1(L), we have

−s∗0(t(L)) = −s∗0(c1(O(1))− c1(L)) = −c1(OPic) + c1(L) = c1(L),

where the first equality holds by (6.1), the second by the naturality of c1, and the third by definition
of an orientation. It remains to show that −s∗0 is injective, and for this we may assume that E has an

orientation c ∈ F̃ 1(Pic). Then, by the diagram (6.2), the injectivity of −s∗0 is equivalent to the injectivity
of left multiplication by c on F ∗(Pic). By Theorem 5.3, we have F ∗(Pic) ≃ F ∗(P∞). By the projective
bundle formula, F ∗(Pn) is a free right F ∗-module with basis 1, c, . . . , cn. It then follows from the Milnor
exact sequence that F ∗(Pic) ≃ limn F

∗(Pn). By [AI23, Lemma 3.1.8], we further have cn+1 = 0 in
F ∗(Pn), from which we deduce the desired injectivity. The final statement is obvious. □

Remark 6.9. In MSunS , Thom orientability is a priori a weaker condition than orientability, since there
may be Thom orientable objects that are not fundamental.

Remark 6.10. One can consider a variant of Definition 6.5 with ThP∞(O(1)) instead of ThPic(L). Since
P∞ ≃ Pic, the proofs of Lemma 6.7 and Proposition 6.8 go through for this definition and imply that it
is in fact equivalent to Definition 6.5 for objects of MSS . However, we do not know if ThP∞(O(1)) and
ThPic(L) are actually isomorphic in MSS .
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7. Algebraic cobordism and the universal orientation

We consider the symmetric monoidal natural transformation

Th: Vect→ MSun : Schop → CAlg(Cat∞)

constructed in Section 3. By Corollary 3.7, it lands in the presheaf of E∞-groups Pic(MSun), which is a
Zariski sheaf. Hence, it factors through the Zariski-local group completion of Vect, which coincides with
the Zariski sheafification of connective algebraic K-theory. We therefore obtain a symmetric monoidal
natural transformation

Th: K→ MSun : Schop → CAlg(Cat∞).

Using the general formalism of Thom spectra/relative colimits developed in [BH21, Section 16], we obtain
a symmetric monoidal functor

M: P(SmS)/K → MSunS ,

natural in S. As in loc. cit., we then define MGL = M(e), where e : Krk=0 ↪→ K is the kernel of the rank
map rk: K→ Z. Explicitly, we have

MGL = colim
(X,ξ)∈Krk=0

ThX(ξ),

where Krk=0 → SmS is the cartesian fibration classified by Krk=0. Since e is an E∞-map, MGL is an
E∞-algebra. Moreover, MGL is stable under arbitrary base change T → S, since K-theory is Zariski-
locally left Kan extended from smooth schemes [EHK+20, Example A.0.6]. The A1-localization of MGL
is exactly Voevodsky’s algebraic cobordism spectrum (using the description of the latter from [BH21,
Theorem 16.13]).

The periodic version is similarly defined by

PMGL = M(idK) = colim
(X,ξ)∈K

ThX(ξ),

where K → SmS is the cartesian fibration classified by K. Then PMGL is an E∞-algebra and is stable
under arbitrary base change.

We will denote by MGL(n) the Thom spectrum of the map Vectn → K, E 7→ E− On, that is:

MGL(n) = Σ−n
P1 ThVectn(En),

where En ∈ Vectn(Vectn) is the universal locally free sheaf of rank n.

Proposition 7.1. The canonical map Vect∞ = colimnVectn → Krk=0 induces an isomorphism in MSS

colim
n

MGL(n) ≃ MGL.

Proof. The canonical map f : Vect∞ → Krk=0 is acyclic in the ∞-topos of Zariski sheaves on SmS

[EHK+20, Lemma 2.1.1], which means that its pushout along itself is an isomorphism. Since the Thom
spectrum functor M induces a colimit-preserving functor

M: PZar(SmS)/K → MSunS ,

cf. [BH21, Proposition 16.9(1)], we obtain a pushout square

M(e ◦ f) M(e)

M(e) M(e)

in MSunS . In the stabilization MSS , this square becomes a pullback square, which proves the claim. □

Remark 7.2. Similarly, we have an isomorphism PMGL ≃ colimnΣ
−n
P1 ThVect(E) in MSS , where E ∈

Vect(Vect) is the universal finite locally free sheaf.

The canonical map MGL(1) → MGL is clearly a Thom orientation of MGL, which in turn gives a
canonical orientation of MGL in MSS by Proposition 6.8. We now prove the universality of MGL as an
oriented ring spectrum.

Lemma 7.3 (Multiplicativity of Thom classes). Let E be an oriented object in CAlg(hMSS). Let E,F
be finite locally free sheaves on X,Y ∈ P(SmS), respectively. Then the Thom class t(E⊞ F) is identified
with the external product of the Thom classes t(E)× t(F) under the canonical isomorphism

Ẽ∗(ThX×Y (E⊞ F)) ≃ Ẽ∗(ThX(E) ∧ ThY (F)).
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Proof. We may assume that E and F are the universal sheaves on Vectm and Vectn, respectively. Let s
be the zero section of V(E⊞ F) ≃ V(E)× V(F). Consider the diagram

Ẽ∗(ThVectm×Vectn(E⊞ F))

E∗(Vectm ×Vectn) E∗(Vectm ×Vectn)

Ẽ∗(ThVectm(E) ∧ ThVectn(F)).

s∗

∼

t(E⊞F)

∼

t(E)×t(F)

∼
s∗

The right triangle commutes, since the maps

P(E⊕ O)× P(F ⊕ O)
bΠ←− B(π∗

1E, π
∗
2F)

bP−→ P((E⊞ F)⊕ O)

inducing the vertical isomorphism are both isomorphisms over the open V(E)× V(F). The boundary of
the diagram commutes since

(−1)m+ns∗(t(E⊞ F)) = cm+n(E⊞ F) = cm(E)× cn(F) = (−1)m+ns∗(t(E)× t(F)),

where the first and third equalities hold by (6.2) and the second by the Whitney sum formula [AI23,
Lemma 4.4.3]. Furthermore, the map s∗ is injective since

E∗(Vectm ×Vectn) ≃ E∗(S)[[c1(π
∗
1E), . . . , cm(π∗

1E), c1(π
∗
2F), . . . , cn(π

∗
2F)]]

by Theorem 6.3. Therefore, the left triangle commutes as desired. □

Proposition 7.4. Let E be an oriented object in CAlg(hMSS). Then there is a unique isomorphism

E∗∗(Vect∞) ≃ E∗∗(MGL)

lifting the Thom isomorphisms E∗∗(Vectn) ≃ E∗∗(MGL(n)) for all n ≥ 0.

Proof. By Proposition 7.1, we have MGL = colimnMGL(n). We apply Lemma 7.3 to the pair of the
universal locally free sheaf En on Vectn and the sheaf O on S. Then it follows that the diagram

E∗∗(Vectn+1) E∗∗(MGL(n+ 1))

E∗∗(Vectn) E∗∗(MGL(n))

∼
t(En+1)

∼
t(En)

commutes, where the left vertical map is induced by the map Vectn → Vectn+1 classifying En⊕O, and is
surjective by Theorem 6.3. By taking limits and using the Milnor exact sequence, we obtain the desired
isomorphism. □

Theorem 7.5 (Universality of MGL). MGL is the initial oriented object in CAlg(hMSS), i.e., for every
oriented object E in CAlg(hMSS), there is a unique orientation-preserving morphism MGL → E in
CAlg(hMSS).

Proof. Let E be an oriented object in CAlg(hMSS). Let t : MGL → E be the morphism in MSS
corresponding to 1 ∈ E0(Vect∞) ≃ E0(MGL), where the isomorphism is that of Proposition 7.4. Then
t obviously preserves orientations. Let tn denote the restriction of t to MGL(n). Then the diagram

MGL(n)⊗MGL(m) E ⊗ E

MGL(n+m) E

tn⊗tm

tn+m

commutes by Lemma 7.3. Also, t preserves units by construction. Hence, t is a morphism in CAlg(hMSS).
It remains to show the uniqueness. Suppose that we are given another morphism t′ : MGL → E in

CAlg(hMSS), which preserves orientations. Since E0(MGL) = limnE
0(MGL(n)), it suffices to show that

the restriction of t′ to MGL(n), which we denote by t′n, agrees with tn for each n ≥ 1. This is clear for
n = 1, because both t1 and t′1 are given by the Thom class of the universal invertible sheaf. Since t and t′

are morphisms of commutative algebras, tn and t′n agree with each other when restricted to MGL(1)⊗n.
However, it follows from Theorem 6.3 that the map

E0(MGL(n))→ E0(MGL(1)⊗n)

is injective, and thus tn = t′n. This completes the proof. □
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Remark 7.6. Slightly more generally, the above argument shows that MGL is initial among oriented
associative algebras in hMSS whose orientation class is central (equivalently, whose Thom isomorphisms
are bimodule maps). However, MGL is not initial among oriented associative algebras: this would imply
that orientations are equivalent to MGL-module structures, but the free oriented motivic spectrum on
the unit, colimnMGL(1)⊗n, is not an MGL-module. In fact, an MGL-module is precisely an oriented
spectrum whose Thom isomorphisms are compatible with direct sums.

Remark 7.7. By Theorem 5.3, the map Gr∞ → Vect∞ becomes an isomorphism in MSS . But this does
not imply that it induces an isomorphism of Thom spectra, i.e., that MGL is a colimit of Thom spectra
over Grassmannians as in A1-homotopy theory. We suspect that this is nevertheless the case. Denoting
by MGr the latter colimit, we note that the map φ : MGr→ MGL is an isomorphism from the perspective
of any oriented object in CAlg(hMSS). If we could promote φ to a morphism of commutative algebras
in hMSS , then MGr would be oriented by Remark 6.10 and we would deduce that φ is an isomorphism.
It seems possible to construct such a monoid structure by imitating [PPR08, Section 2.1] and using the
results of Section 3.

We say that E ∈ CAlg(hMSS) is periodic if a unit β ∈ E−1(1), called the Bott element, is given. Note
that PMGL is periodic with the Bott element given by the canonical map P1 = Th∗(O)→ ThPic(E1).

Corollary 7.8 (Universality of PMGL). PMGL is the initial periodic oriented object in CAlg(hMSS),
i.e., for every periodic oriented object E in CAlg(hMSS), there is a unique morphism PMGL → E in
CAlg(hMSS) that preserves the orientation and the Bott element.

Proof. This follows immediately from Theorem 7.5. □

For later purposes, we record the computation of the oriented homology of MGL. This is a standard
computation once we know that MGL⊗ (Grn,k)+ is a finite free MGL-module (see for example [NSØ09,
Proposition 6.2] for the analogue in A1-homotopy theory).

Proposition 7.9. Let E be an oriented object in CAlg(hMSS).

(i) There is an isomorphism of E∗∗-algebras

E∗∗(Vect∞) ≃ E∗∗[β0, β1, . . . ]/(β0 − 1),

where the ring structure on the left-hand side comes from the algebra structure of Σ∞
P1(Vect∞)+ ≃

Σ∞
P1(Krk=0)+ and βi ∈ Ei(Pic) is the predual basis to ci ∈ Ei(Pic).

(ii) There is an isomorphism of E∗∗-algebras

E∗∗(MGL) ≃ E∗∗[b0, b1, . . . ]/(b0 − 1),

where bi is the image of βi under the Thom isomorphism Ei(MGL) ≃ Ei(Vect∞). Moreover, if
cE and cMGL are the images in (E ⊗MGL)1(Pic) of the orientations of E and MGL, we have

cMGL =
∑
i≥0

bic
i+1
E .

Proof. (i) By [AI23, Lemma 4.4.4], the Grassmannian formula holds for all MGL-modules M in MSS :
the map ∑

α

c(Q)α :
⊕
α

Σ
−∥α∥
P1 M →M (Grn,k)+

is an isomorphism, where α = (α1, . . . , αn) runs over all n-tuples of non-negative integers with
∑
i αi ≤

k − n and we write ∥α∥ =
∑
i iαi and cα =

∏
i c
αi
i . It follows that MGL ⊗ (Grn,k)+ is a finite free

MGL-module. Hence, for a commutative MGL-algebra E in hMSS , the map

E∗∗(Grn,k)→ E∗∗(Grn,k)
∨

is an isomorphism of E∗∗-modules for finite k and thus for k =∞ too. Then it follows from Theorem 5.3

that E∗∗(Vectn) is the dual of E∗∗(Vectn). Since E
∗∗(Vectn) = (E∗∗(Pic)⊗̂n)Σn , we have E∗∗(Vectn) =

SymnE∗∗(Pic). Moreover, the direct sum pairing Vectm×Vectn → Vectm+n induces the canonical map
Symm⊗Symn → Symm+n in homology. The map E∗∗ → E∗∗(Pic) induced by the base point of Pic is
multiplication by β0, and hence so is the map E∗∗(Vectn)→ E∗∗(Vectn+1) induced by E 7→ E⊕O. Thus,
under the identification

E∗∗(Vectn) = Symn

(⊕
i≥0

E∗∗βi

)
≃ Sym≤n

(⊕
i≥1

E∗∗βi

)
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given by β0 7→ 1, the map E∗∗(Vectn)→ E∗∗(Vectn+1) corresponds to the inclusion Sym≤n → Sym≤n+1.
In the colimit, we obtain the claimed isomorphism of E∗∗-algebras

E∗∗(Vect∞) = colim
n

E∗∗(Vectn) ≃ E∗∗[β1, β2, . . . ].

(ii) Since we have Thom isomorphisms t(En) : M
Vectn,+

∼−→MMGL(n) for all MGL-modulesM in MSS ,
we get an isomorphism of MGL-modules

MGL⊗MGL(n) ≃ MGL⊗Vectn,+,

hence an isomorphism of E∗∗-modules Ẽ∗∗(MGL(n)) ≃ E∗∗(Vectn). It follows from Lemma 7.3 that
this isomorphism is natural in n, and that we obtain an isomorphism of rings E∗∗(MGL) ≃ E∗∗(Vect∞)
in the colimit. By definition of βi, the last formula is equivalent to the following statement: the map
Ẽ∗(Pic) → E∗−1(MGL) induced by the universal orientation c : Pic → ΣP1MGL sends βi+1 to bi. By
definition, c factors through −s̃0 : Pic → ΣP1MGL(1), and so we must show that the induced map

Ẽ∗(Pic) → Ẽ∗−1(MGL(1)) composed with the Thom isomorphism Ẽ∗−1(MGL(1)) ≃ E∗−1(Pic) sends

βi+1 to βi. Dualizing, this is equivalent to −s̃∗0 ◦ t(E1) : E
∗−1(Pic)→ Ẽ∗(Pic) being multiplication by c,

which is a special case of (6.2). □

Corollary 7.10. Let E be an oriented object in CAlg(hMSS). Then there is an isomorphism of E-
algebras

E ⊗MGL ≃ E[b1, b2, . . . ] =
⊕
m

Σ
deg(m)
P1 E,

where m ranges over the monomials in the variables bi and deg(bi) = i.

Proof. Proposition 7.9(ii) gives a map of E-algebras from the right-hand side to the left-hand side. It is
an isomorphism since Proposition 7.9 holds not just over S but also over any smooth S-scheme. □

8. Algebraic Conner–Floyd isomorphism

We shall prove the Conner–Floyd isomorphism for algebraic K-theory by following the argument of
Spitzweck and Østvær in the A1-invariant setting [SØ09], i.e., by comparing universal properties of
cohomology theories defined on compact motivic spectra. A key input is the isomorphism Σ∞

P1(Grn)+ ≃
Σ∞

P1(Vectn)+ of Theorem 5.3. We first introduce some terminology for such cohomology theories:

Definition 8.1. Let S be a qcqs derived scheme.

• A cohomology theory on MSωS is a homological functor

E0 : MSω,opS → Ab,

i.e, a functor that preserves finite products and sends cofiber sequences to exact sequences. We
then write Eq = E0 ◦ Σ−q

P1 , E
p,q = Eq ◦ Σ2q−p, and we denote by

Êp,q : MSopS → Pro(Ab)

the extension of Ep,q that preserves cofiltered limits (which is again a homological functor). For

a presheaf X ∈ P(SmS) we write Êp,q(X) instead of Êp,q(Σ∞
P1X+).

• A ring cohomology theory will mean a commutative monoid in cohomology theories, with respect
to the Day convolution in Fun(MSω,opS ,Ab).

• A periodic cohomology theory is a ring cohomology theory E0 with a unit β ∈ E−1(1).

• An oriented cohomology theory is a ring cohomology theory E0 with an element c ∈ Ê1(Pic) =
limnE

1(Pn), whose restriction to E1(P1) ≃ E1(1)⊕ E0(1) is (0, 1).

• A Gm-preoriented cohomology theory is a ring cohomology theory E0 with an element u ∈ Ê0(Pic)

such that u|pt = 1 and ⊗∗(u) = u1u2, where ui = π∗
i (u) ∈ Ê0(Pic×Pic). We then define the Bott

element β ∈ E−1(1) = Ẽ0(P1) to be the element 1−u|P1 , and we say that (E0, u) is Gm-oriented
if β is unit.6

Remark 8.2. Let X ∈ MSS and let E0 be a cohomology theory on MSωS . Then there is a canonical

isomorphism between the limit of the pro-group Êp,q(X) and the group of natural transformations
X0(−)→ Ep,q(−) on MSωS .

6The element u is automatically a unit since Pic is a group. It should be understood as defining a preorientation of the

group scheme Gm over the ring E in the sense of Lurie [Lur09, Definition 3.2].
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Let (E0, c) be an oriented cohomology theory on MSωS . For an arbitrary presheaf X ∈ P(SmS) and

an invertible sheaf L ∈ Pic(X), we define the first Chern class c1(L) ∈ Ê1(X) to be the pullback of c

along the map X → Pic classifying L. The theory Ê∗∗ then satisfies the projective bundle formula: for
any X ∈ P(SmS) and any locally free sheaf E of rank n over X, the map of pro-groups

n−1⊕
i=0

Ê∗−2i,∗−i(X)→ Ê∗∗(P(E)), (a0, . . . , an−1) 7→
n−1∑
i=0

c1(OP(E)(1))
ip∗(ai),

is an isomorphism. To see this, consider the full subcategory of P(SmS)/X where the projective bundle
formula holds for the pullback of E. This subcategory contains representable presheaves by the proof of
[AI23, Lemma 3.3.5]. It also contains the initial object, is closed under pushouts by the 5-lemma, and is

closed under filtered colimits by definition of Ê∗∗. It therefore contains X itself. Consequently, we also
have the Thom isomorphism

Ê∗∗(ThX(E)) ≃ Ê∗−2n,∗−n(X)

and higher Chern classes ci(E) ∈ Êi(X).
One can further compute the ring structure on the cohomology of a finite product of projective spaces

as in [AI23, Lemma 3.1.8], using that for a scheme X ∈ Smfp
S and quasi-compact open subschemes

U1, . . . , Un ⊂ X we have a refined cup product

E∗∗(X/U1)⊗ · · · ⊗ E∗∗(X/Un)→ E∗∗(X/(U1 ∪ · · · ∪ Un)).

Together with the isomorphism Σ∞
P1P∞

+ ≃ Σ∞
P1Pic+ of Theorem 5.3, we obtain an isomorphism of pro-rings

Ê∗∗(Picn) = E∗∗[[x1, . . . , xn]],

where xi = π∗
i (c). Since (Pic,⊗) is an E∞-group, the power series ⊗∗(c) ∈ E∗[[x1, x2]] is a commutative

formal group law over E∗, homogeneous of cohomological degree 1. By construction, this formal group
law computes c1(L1 ⊗ L2) in terms of c1(L1) and c1(L2) for any X ∈ P(SmS) and any L1,L2 ∈ Pic(X)
(and first Chern classes are nilpotent when Σ∞

P1X+ is compact). Using the formal group law, one may

prove the Whitney sum formula for the Chern classes in Ê∗ exactly as in [AI23, Lemma 4.4.3].
The following lemma explains the relationship between orientations and Gm-orientations:

Lemma 8.3 (Orientations vs. Gm-orientations). Let E0 be a ring cohomology theory on MSωS. Then the
assignment

u 7→ (β, c), β = 1− u|P1 , c = β−1(1− u),
gives a bijection between Gm-orientations of E0 and pairs (β, c) consisting of a unit β ∈ E−1(1) and an

orientation c ∈ Ê1(Pic) satisfying

⊗∗(c) = x1 + x2 − βx1x2,
where xi = π∗

i (c) ∈ Ê1(Pic× Pic). The inverse is given by (β, c) 7→ 1− βc.

Proof. It is clear that the given formulas are inverse to each other. Suppose u is a Gm-orientation with

associated unit β, and let c = β−1(1 − u) ∈ Ê1(Pic). Then the formula for ⊗∗(u) yields the desired
formula for ⊗∗(c). Moreover, since u|pt = 1, we have c|P1 = β−1(1− u|P1) = β−1(0, β) = (0, 1), so that c
is an orientation.

Conversely, let (β, c) be a pair as in the statement and let u = 1− βc. Then u|pt = 1− β · 0 = 1 and

⊗∗(u) = 1− β · ⊗∗(c) = 1− β(x1 + x2 − βx1x2) = (1− βx1)(1− βx2) = u1u2,

so that u is a Gm-preorientation. Moreover, 1− u|P1 = βc|P1 = (0, β) and β is a unit. □

Example 8.4. Let KGL ∈ CAlg(MSS) be the motivic spectrum representing algebraic K-theory. The
class

u = [O(−1)] ∈ lim
n

K0(Pn) = K̂GL0(Pic)

is a Gm-preorientation of KGL0(−) : MSω,opS → Ab (as one sees using the Segre embeddings). The

induced element β = 1− u|P1 ∈ KGL−1(1) is the usual Bott element, given by the structure sheaf of the
point ∞ ∈ P1. Since β is a unit, KGL0(−) is Gm-oriented.

Proposition 8.5 (Universality of MGL-cohomology). Let S be qcqs derived scheme. Then the ring
cohomology theory

MGL0(−) : MSω,opS → Ab

is the initial object in the category of oriented cohomology theories on MSωS.
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Proof. The proof is a straightforward modification of the one of Theorem 7.5. The point is that, if E0 is

an oriented cohomology theory on MSωS , then Ê
∗∗ has the correct formula for Vectn:

Ê∗∗(X ×Vectn) ≃ Ê∗∗(X)[[c1, . . . , cn]].

This follows from Theorem 5.3 and the computation of the cohomology of Grassmannians using the

projective bundle formula (see [AI22, Lemma 4.5]). Then the multiplicativity of Thom classes in Ê∗∗

follows as in Lemma 7.3, and we get the infinite Thom isomorphism

Ê∗∗(Vect∞) ≃ Ê∗∗(MGL)

as in Proposition 7.4. The cohomology class 1 ∈ Ê0(Vect∞) ≃ Ê0(MGL) then gives the desired unique
morphism MGL0 → E0 of oriented cohomology theories as in Theorem 7.5. □

Corollary 8.6 (Universality of PMGL-cohomology). Let S be qcqs derived scheme. Then the ring
cohomology theory

PMGL0(−) : MSω,opS → Ab

is the initial object in the category of periodic oriented cohomology theories on MSωS.

Proof. This follows immediately from Proposition 8.5. □

Lemma 8.7. Let C be a symmetric monoidal cocomplete stable ∞-category whose tensor product pre-
serves colimits in each variable and whose unit is compact. Let E ∈ CAlg(hC) be such that there is an
isomorphism of E-modules

E ⊗ E ≃
⊕
α

E ⊗ Lα

with Lα ∈ Pic(C). Then the Amitsur complex of E defines a Pic(C)-graded Hopf algebroid (E⋆, E⋆E)
such that the functors

E⋆(−) : C→ ModE⋆
,

E⋆(−) : Cω,op → ModE⋆

factor through the category of (E⋆, E⋆E)-comodules.

Proof. The assumption on E implies that, for any X ∈ C and n ≥ 1, the canonical map

(E⊗n)⋆ ⊗E⋆
E⋆X → (E⊗n)⋆X

is an isomorphism, and that when X is compact, the canonical map

(E⊗n)⋆ ⊗E⋆
E⋆X → (E⊗n)⋆X

is an isomorphism. Let ηL : E ≃ E ⊗ 1→ E ⊗E be the left unit. Taking X = E itself and n ≤ 3 yields
the Hopf algebroid (E⋆, E⋆E) with comultiplication

E⋆E
ηL−−→ (E ⊗ E)⋆E

∼←− E⋆E ⊗E⋆
E⋆E.

The coaction on E⋆X is then given by the composite

E⋆X
ηL−−→ (E ⊗ E)⋆X

∼←− E⋆E ⊗E⋆
E⋆X,

and the coaction on E⋆X for X compact is given by the composite

E⋆X
ηL−−→ (E ⊗ E)⋆X

∼←− E⋆E ⊗E⋆ E
⋆X. □

By Corollary 7.10, we have an isomorphism of MGL-modules

MGL⊗MGL ≃ MGL[b1, b2, . . . ] =
⊕
m

Σ
deg(m)
P1 MGL,

where m ranges over the monomials in the variables bi and deg(bi) = i. Lemma 8.7 therefore applies to
MGL ∈ CAlg(hMSS) and yields a Z-graded Hopf algebroid (MGL∗,MGL∗MGL).7 Note that if c and c′

are two orientations of E ∈ CAlg(hMSS), then there is a unique power series f(t) ∈ t + t2E∗[[t]] such
that f(c) = c′ in E1(Pic), which defines a strict isomorphism between the associated formal group laws
over E∗. The graded formal group law F over MGL∗ and the strict isomorphism between the two formal
group laws η∗L(F ) and η

∗
R(F ) over MGL∗MGL then induce a morphism of graded Hopf algebroids

(L,LB)→ (MGL∗,MGL∗MGL),

7This Hopf algebroid is a priori only τ≤1S-graded, but it turns out to be Z-graded as the swap map on P1 ⊗ P1 induces

the identity on MGL2(−), by the naturality of the Thom isomorphism.
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where (L,LB) is the Hopf algebroid classifying the strict groupoid of formal group laws and strict iso-
morphisms. Recall that LB is a polynomial ring L[b0, b1, b2, . . . ]/(b0 − 1), over which the power series∑
i≥0 bix

i+1 is the universal strict isomorphism [Rav03, Proposition A2.1.15]. Proposition 7.9(ii) implies
that the above morphism is a cocartesian natural transformation of cosimplicial commutative rings, so
that a structure of (MGL∗,MGL∗MGL)-comodule on an MGL∗-module is equivalent to a structure of
(L,LB)-comodule on the underlying L-module.

Proposition 8.8. Let S be qcqs derived scheme. Then the ring cohomology theory

(MGL∗(−)⊗L Z[β±1])0 : MSω,opS → Ab

is the initial object in the category of Gm-oriented cohomology theories on MSωS.

Proof. By Lemma 8.7, the functor MGL∗(−) on compact spectra is valued in (L,LB)-comodules. Since
Z[β±1] is a flat (L,LB)-comodule by Landweber’s criterion [Lur10, Lecture 15, Example 12], the given
functor is indeed a homological functor. It then follows from Lemma 8.3 that it has the stated universal
property. □

Lemma 8.9. Let S be qcqs derived scheme. Then the ring cohomology theory

(Σ∞
P1Pic+)

0(−) : MSω,opS → Ab

is the initial object in the category of Gm-preoriented cohomology theories on MSωS.

Proof. This is clear by Remark 8.2. □

Proposition 8.10 (Universality of KGL-cohomology). Let S be qcqs derived scheme. Then the ring
cohomology theory

KGL0(−) : MSω,opS → Ab

is the initial object in the category of Gm-oriented cohomology theories on MSωS.

Proof. By [AI23, Theorem 5.3.3], there is an isomorphism of motivic E∞-ring spectra

KGL ≃ Σ∞
P1Pic+[β

−1],

where β = 1−[O(−1)]. This is the Bott element associated with the Gm-preorientation on (Σ∞
P1Pic+)

0(−)
given by the dual of the universal invertible sheaf, which is a universal Gm-preorientation by Lemma 8.9.
Hence, the cohomology theory defined by Σ∞

P1Pic+[β
−1] has the desired universal property. □

Theorem 8.11 (Algebraic Conner–Floyd isomorphism). Let X be a qcqs derived scheme. Then there is
an isomorphism of bigraded rings

MGL∗∗(X)⊗L Z[β±1] ≃ KGL∗∗(X).

Proof. Combine Propositions 8.8 and 8.10. □

Theorem 8.12 (Rational PMGL-cohomology). Let X be a qcqs derived scheme. Then there is an
isomorphism of bigraded rings

Q⊗ PMGL∗∗(X) ≃ LQ ⊗KGL∗∗(X),

where LQ is shorthand for Q⊗ L.

Proof. Both cohomology theories Q ⊗ PMGL∗(−) and LQ ⊗ KGL∗(−) take values in graded LQ[u
±1]-

algebras, where the degree −1 element u acts as the canonical unit on Q ⊗ PMGL∗(−) and as β on
LQ ⊗ KGL∗(−). Let cΩ and cK be the orientations of Q ⊗ PMGL0(−) and KGL0(−), respectively. By

abuse of notation, we will also denote by cK the orientation 1⊗ cK of LQ ⊗KGL0(−).
Since all formal group laws with coefficients in a ring containing the rationals are equivalent [Haz78,

Theorem 1.6.2], there exists a power series f(t) ∈ t + t2LQ[u][[t]] such that the orientation f(cΩ) of

Q⊗PMGL0(−) satisfies the formal group law x+y−βxy, and the orientation f−1(cK) of LQ⊗KGL0(−)
satisfies the universal formal group law of LQ. Here, f−1(t) denotes the compositional inverse of f(t).
By Corollary 8.6 and Proposition 8.10 and extension of scalars, there exist unique morphisms of oriented
cohomology theories

Ψ:
(
Q⊗ PMGL0, cΩ

)
→

(
LQ ⊗KGL0, f−1(cK)

)
and

Φ:
(
LQ ⊗KGL0, cK

)
→

(
Q⊗ PMGL0, f(cΩ)

)
,

the latter of which is required to be LQ-linear. By the hypothesis on f−1(cK), Ψ is also LQ-linear. As

Φ ◦ Ψ is orientation-preserving, it is the identity by the universal property of PMGL0(−). As Ψ ◦ Φ is
orientation-preserving and LQ-linear, it is the identity by the universal property of KGL0(−). □
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Recall that the universal precobordism ring Ω∗(X) of a derived scheme X is defined as the group
completion of the monoid of equivalence classes [V → X] of projective quasi-smooth derived schemes
over X, modulo the relations

[W0 → X] = [A→ X] + [B → X]− [PA∩B(O(A)⊕ O)]

for every quasi-smooth projective W → P1
X with fibers W0 and A + B over 0 and ∞ respectively

[AY19, Ann22b]. Here, A+B denotes the sum of virtual effective Cartier divisors.

Corollary 8.13. Let X be a noetherian derived scheme of finite Krull dimension, and assume that X
admits an ample line bundle8. Then there is a natural isomorphism of rings

Q⊗
⊕
n∈Z

MGLn(X) ≃ Q⊗
⊕
n∈Z

Ωn(X).

Proof. Combine Theorem 8.12 with [Ann22c, Theorem 236]. □

Remark 8.14. Periodization loses track of the grading, and therefore we do not immediately obtain an
isomorphism of graded rings. However, by constructing enough transfers for MGL∗, it would be possible
to obtain a comparison map Ω∗ → MGL∗ of graded rings with integer coefficients [Ann22c, Theorem 192].
It is an interesting question under which conditions this map, or rather its refinement Ω∗ → MGL∗, where
Ω∗ is the derived algebraic cobordism [Ann21], is an isomorphism. The only known instance seems to be
Levine’s result [Lev09], which states that the natural map Ω∗(X)→ (LA1MGL)∗(X) is an isomorphism
for all schemes X that are smooth and quasi-projective over a field of characteristic 0.

Remark 8.15 (Conner–Floyd isomorphism for Selmer K-theory). Let MSétS and MSét,hypS be the full
subcategories of MSS spanned by the étale sheaves and the étale hypersheaves, respectively. The image
of KGL in MSétS then represents the Zariski sheafification of Selmer K-theory KSel, see [AI23, Section
5.4]. If S is qcqs of finite Krull dimension and of finite punctual étale cohomological dimension, then

MSét,hypS is compactly generated and the localization functor MSS → MSét,hypS preserves compact objects
(combine [CM21, Corollary 3.29] and [Bac21, Lemma 2.16]). In this case, KSel is also an étale hypersheaf

on Smfp
S [CM21, Corollary 7.15]. One can easily see that the arguments in this section go through if we

replace MSS by any commutative MSS-algebra in PrLω [Lur17, Notation 5.5.7.7]. Under this finiteness
assumption on S, we therefore obtain an isomorphism of bigraded rings

MGLét,hyp∗∗(S)⊗L Z[β±1] ≃ KSel∗∗(S).

9. Snaith theorem for periodic algebraic cobordism

We prove the Snaith theorem for PMGL, which is a non-A1-localized refinement of a theorem of
Gepner–Snaith [GS09, Corollary 3.10]. Our proof is however quite different from theirs9 and uses instead
the same strategy as the proof of the Conner–Floyd isomorphism in Section 8.

For the following definition, we recall that the map Vect∞ → Krk=0 becomes an isomorphism in the
∞-category of Zariski sheaves of spectra (see the proof of Proposition 7.1). In particular, Σ∞

P1Vect∞,+

has a canonical structure of E∞-algebra in MSS , whose multiplication we denote by ⊕.

Definition 9.1. Let S be a qcqs derived scheme. A t-preoriented cohomology theory on MSωS is a ring

cohomology theory E0 with an element u ∈ Ê0(Vect∞) such that u|pt = 1 and ⊕∗(u) = u1u2, where

ui = π∗
i (u) ∈ Ê0(Vect∞ × Vect∞). We then define the Bott element β ∈ E−1(1) = Ẽ0(P1) to be the

element 1− u|P1 , and we say that E0 is t-oriented if β is a unit.

Let E0 be an oriented cohomology theory on MSωS . If En is the universal rank n locally free sheaf on

Vectn, then the restriction of the Chern class ci(En) ∈ Êi(Vectn) to Vectn−1 is the Chern class ci(En−1).
Thus, the sequence (ci(En))n≥0 defines a canonical element

ci ∈ lim
n
Êi(Vectn) = Êi(Vect∞),

such that for any X ∈ P(SmS) we have

Ê∗∗(X ×Vect∞) ≃ Ê∗∗(X)[[c1, c2, . . . ]].

The following lemma is the analogue of Lemma 8.3 for t-orientations:

8By employing a slightly more complicated construction of Ω∗, it is possible to weaken the assumptions on X to merely

admitting an ample family of line bundles, see [Ann22a].
9In fact, the argument in loc. cit. seems to contain a crucial mistake: the proof of [GS09, Theorem 3.9] uses a universal

property of localization of ring spectra in the homotopy category, which is not valid.
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Lemma 9.2 (Orientations vs. t-orientations). Let E0 be a ring cohomology theory on MSωS. Then the
assignment

u 7→ (β, c), β = 1− u|P1 , c = β−1(1− u|Pic)

gives a bijection between t-orientations u of E0 and pairs (β, c) consisting of a unit β ∈ E−1(1) and an

orientation c ∈ Ê1(Pic). The inverse is given by the formula

u =
∑
i≥0

(−β)ici ∈ Ê0(Vect∞).

Proof. Suppose u is a t-orientation with associated unit β, and let c = β−1(1− u|Pic) ∈ Ê1(Pic). Since
u|pt = 1, we have c|P1 = β−1(1 − u|P1) = β−1(0, β) = (0, 1), so that c is an orientation. Conversely,
suppose that E0 is perodic and oriented, with Bott element β and orientation c, and let u =

∑
i(−β)ici.

Then it is clear that u|pt = 1 and that β = 1 − u|P1 . Furthermore, it follows from the Whitney sum
formula that ⊕∗(u) = u1u2, so that u is a t-orientation.

It remains to show that the two assignments are inverse to each other. It is clear that the composite
(β, c) 7→ u 7→ (β, c) is the identity. Conversely, given a t-orientation u, we have to prove the equality

u =
∑
i≥0(−β)ici. Since Ê0(Vect∞) = limn Ê

0(Vectn), it suffices to show that these two elements

coincide in Ê0(Vectn) for every n. This is clear for n = 1. Note that the map

Ê∗(Vectn)→ Ê∗(Picn)

induced by the direct sum ⊕ : Picn → Vectn is injective. We now conclude by observing that the two
elements coincide in the right-hand side, by the case n = 1, the formula ⊕∗(u) = u1u2, and the Whitney
sum formula for Chern classes. □

Theorem 9.3 (Snaith theorem for PMGL). For any derived scheme S, there is a canonical isomorphism

PMGL ≃ Σ∞
P1Vect∞,+[β

−1]

in CAlg(hMSS), where β = 1− [O(−1)].

Proof. Let u ∈ (Σ∞
P1Vect∞,+)

0(Vect∞) be the element induced by minus the universal K-theory element
of rank 0, so that β = 1 − u|P1 . Then β−1(1 − u|Pic) is an orientation of the periodic ring spectrum
Σ∞

P1Vect∞,+[β
−1]. By the universal property of PMGL (Corollary 7.8), we obtain a canonical map

PMGL→ Σ∞
P1Vect∞,+[β

−1]

in CAlg(hMSS). To prove that it is an isomorphism, we may assume S qcqs. In this case, u defines a
t-preorientation of (Σ∞

P1Vect∞,+)
0(−) with associated Bott element β, which by Remark 8.2 is the initial

t-preorientation. By Corollary 8.6 and Lemma 9.2, both sides then have the same universal property as
cohomology theories on MSωS , and it follows that the map is an isomorphism. □

Remark 9.4. Under the Snaith isomorphisms

PMGL ≃ Σ∞
P1Vect∞,+[β

−1],

KGL ≃ Σ∞
P1Pic+[β

−1]

of Theorem 9.3 and [AI23, Theorem 5.3.3], the orientation map PMGL→ KGL in CAlg(hMSS) provided
by Corollary 7.8 is induced by the determinant det : Krk=0 → Pic. This follows from the fact that Σ∞

P1 det+
sends u|Pic ∈ (Σ∞

P1Vect∞,+)
0(Pic) to the class in (Σ∞

P1Pic+)
0(Pic) represented by the dual of the universal

invertible sheaf.

Remark 9.5. Both PMGL and Σ∞
P1Vect∞,+[β

−1] have canonical E∞-algebra structures, but they are
not isomorphic as E∞-algebras in general, since they are known not to be isomorphic as E5-algebras
after Betti realization [HY20, Theorem 1.4]. One might expect that they are at least isomorphic as
E1-algebras, but this is not known even after A1-localization.

Note that the determinant induces an E∞-map

Σ∞
P1Vect∞,+[β

−1]→ KGL

(see Remark 9.4). At this point we do not know if there is also an E∞-map

PMGL→ KGL,

although this is known in A1-homotopy theory using the formalism of framed correspondences [HJN+24,
Proposition 6.2].
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Laboratoire de Mathématiques d’Orsay, Université Paris-Saclay, 307 rue Michel Magat, F-91405 Orsay.
Email address: ryomei.iwasa@cnrs.fr

URL: http://ryomei.com

https://doi.org/10.1090/s0273-0979-04-01026-2
https://doi.org/10.4007/annals.2017.186.1.3
https://doi.org/10.4007/annals.2017.186.1.3
https://archive.mpim-bonn.mpg.de/id/eprint/703
http://arxiv.org/abs/0805.4430
mailto:tannala@ias.edu
https://www.math.ias.edu/~tannala/
mailto:marc.hoyois@ur.de
https://hoyois.app.uni-regensburg.de
mailto:ryomei.iwasa@cnrs.fr
http://ryomei.com

	1. Introduction
	2. Smooth blowup excision
	3. Thom spaces
	4. Projective bundle homotopy invariance
	5. Grassmannians and the stack of vector bundles
	6. Orientations revisited
	7. Algebraic cobordism and the universal orientation
	8. Algebraic Conner–Floyd isomorphism
	9. Snaith theorem for periodic algebraic cobordism
	References

