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Abstract. We generalize several basic facts about the motivic sphere spectrum in A1-homotopy theory

to the category MS of non-A1-invariant motivic spectra over a derived scheme. On the one hand, we
show that all the Milnor–Witt K-theory relations hold in the graded endomorphism ring of the motivic

sphere. On the other hand, we show that the positive eigenspace 1+
Q of the rational motivic sphere is the

rational motivic cohomology spectrum HQ, which represents the eigenspaces of the Adams operations

on rational algebraic K-theory. We deduce several familiar characterizations of HQ-modules in MS: a

rational motivic spectrum is an HQ-module iff it is orientable, iff the involution ⟨−1⟩ is the identity, iff
the Hopf map η is zero, iff it satisfies étale descent. Moreover, these conditions are automatic in many

cases, for example over non-orderable fields and over Z[ζn] for any n ≥ 3.

Contents

1. Introduction 1
2. The multiplicative structure on the Tate circle 2
3. The Hopf map 3
4. The Steinberg relation 5
5. The Grothendieck–Witt relations 10
6. The positive eigenspace of the rational motivic sphere 11
7. Beilinson motives 12
References 13

1. Introduction

Let S be a derived scheme. In this article, we prove several results about the motivic sphere spectrum
over S, by which we mean the unit object 1 of the symmetric monoidal category of motivic spectra MSS
introduced and studied in [AI23, AHI24a, AHI24b]. These refine familiar results about the A1-localization
LA1(1) of 1, due for the most part to F. Morel.

Aside from the fact that, by design, A1-invariance does not hold in MSS , a key difference with stable
A1-homotopy theory is that the multiplicative group Gm is not a “motivic sphere” anymore, i.e., it is not
⊗-invertible in MSS . Instead, the Tate circle in MSS is the desuspended projective line Σ−1P1, which is
a canonical direct summand of Gm (whose complement is A1-contractible).

We first define various elements in the graded ring π0Map(1, (Σ−1P1)⊗∗), which lift the elements of
the same name in A1-homotopy theory:

• The Hopf map η in degree −1 is induced by the multiplication of Gm and is also the connecting
map of the cofiber sequence P1 → P2 → P2/P1.

• The element ε in degree 0 is the swap automorphism of (Σ−1P1)⊗2.
• For any unit a ∈ O(S)×, the element [a] in degree 1 is induced by the point a ∈ Gm.
• For any unit a ∈ O(S)×, the element ⟨a⟩ in degree 0 is induced by the multiplication by a on P1.

These elements are related by ⟨a⟩ = η[a] + 1 and ε = −⟨−1⟩.

Theorem 1.1 (The Milnor–Witt K-theory relations, Theorems 3.4 and 4.1). The following relations
hold in the graded ring π0Map(1, (Σ−1P1)⊗∗):

(i) [a][1− a] = 0 for all a ∈ O(S)× with 1− a ∈ O(S)×.
(ii) [ab] = [a] + [b] + η[a][b] for all a, b ∈ O(S)×.
(iii) η[a] = [a]η for all a ∈ O(S)×.
(iv) ηh = 0, where h = η[−1] + 2.
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Theorem 1.2 (The Grothendieck–Witt relations, Corollary 5.3). The following relations hold in the
group π0Map(1,1):

(i) ⟨ab2⟩ = ⟨a⟩ for all a, b ∈ O(S)×.
(ii) ⟨a⟩+ ⟨−a⟩ = ⟨1⟩+ ⟨−1⟩ for all a ∈ O(S)×.
(iii) ⟨a⟩+ ⟨b⟩ = ⟨a+ b⟩+ ⟨(a+ b)ab⟩ for all a, b ∈ O(S)× with a+ b ∈ O(S)×.

After inverting 2, the motivic sphere spectrum splits into the eigenspaces of the involution ⟨−1⟩:

1[ 12 ] = 1[ 12 ]
+ × 1[ 12 ]

−.

Over regular noetherian schemes, where K-theory is A1-invariant, Morel showed that the motivic spec-
trum LA1(1+

Q ) represents Beilinson’s rational motivic cohomology groups, defined as the eigenspaces of

the Adams operations on the rational K-groups. As proved in [AHI24b, §9], the latter are represented by
an idempotent motivic spectrum HQ in MSS for any derived scheme S, and we obtain here the following
generalization of Morel’s result:

Theorem 1.3 (Motivic Serre finiteness, Corollary 6.3). 1+
Q = HQ.

The category of Beilinson motives over S is the full subcategory

ModHQ(MSS) = (MSS)
+
Q ⊂ MSS .

We conclude with several characterizations of Beilinson motives, generalizing the analogous results in
A1-homotopy theory proved by Cisinski and Déglise in [CD19, §16]:

Theorem 1.4 (Characterizations of Beilinson motives, Theorem 7.4). The following conditions are
equivalent for a rational motivic spectrum E:

(i) E is an HQ-module.
(ii) E admits a structure of MGL-module.
(iii) E is orientable.
(iv) The swap automorphism of Σ2

P1E is the identity.
(v) The involution ⟨−1⟩ : E → E is the identity.
(vi) The Hopf map η : ΣP1E → ΣE is zero.
(vii) E satisfies étale descent.

Moreover, these conditions always hold if none of the residue fields of S are formally real and −1 is a
unit sum of squares in Oh

S,s whenever F2 is algebraically closed in κ(s) (see Definition 5.4).

Conventions. We use throughout the Nisnevich-local version of MS as in [AHI24b]:

MSS = SpP1(PNis,sbu(SmS ,Sp)).

However, with the exception of the statements about étale descent in Section 7, all results in this paper
hold in the simplest version of MS defined using Zariski descent and elementary blowup excision as in
[AHI24a] (provided one also removes the word “henselian” in Proposition 5.6).

Acknowledgments. I am grateful to Toni Annala and Ryomei Iwasa for many discussions around the
topics of this article. I also want to thank Alexey Ananyevskiy for some valuable correspondence about
Proposition 5.2, and Longke Tang for communicating his proof of Proposition 4.7.

2. The multiplicative structure on the Tate circle

In stable A1-homotopy theory, the Tate circle Σ∞
P1Gm inherits a multiplicative structure from the group

scheme Gm. More precisely, it is a nonunital E∞-ring as the fiber of the augmention map Σ∞
P1Gm+ → 1.

In this section, we show that the Tate circle Σ−1P1 in MS splits off multiplicatively from Gm.
Let A1

0 = P1 −∞ and A1
∞ = P1 − 0. Recall that Σ−1P1 is a direct summand of Gm in MS, by the

Bass fundamental theorem [AHI24a, Proposition 4.12]. In fact, the map

∂ : Σ−1P1 → Gm

induced by the covering P1 = A1
0 ∪A1

∞ (where everything is pointed at 1) admits a canonical retraction

r : Gm → Σ−1P1,

due to the fact that both embeddings A1
0 ↪→ P1 and A1

∞ ↪→ P1 are canonically nullhomotopic [AHI24a,
Corollary 4.11]. The complementary summand to Σ−1P1 in Gm is A1

0 ⊕ A1
∞.
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Remark 2.1 (Equivariant P-homotopies). Let M ∈ Mon(P(SmS)) be a presheaf of monoids acting on
X ∈ P(SmS), let E ∈ Vect(X/M), and let σ : E → OX/M be a linear map. Then the homotopy h(σ) of
[AHI24a, Theorem 4.1(ii)] between the composites

X VX(E) PX(E⊕ O)
σ

0

in (MSS)/X+
is M -equivariant, i.e., it lifts to a homotopy in ModM+(MSS)/X+

. This follows from the
fact that h(σ) is P(SmS)-linear in (X,E, σ), which is a formal consequence of the functoriality of h(σ) in
the base S and the smooth projection formula.

Construction 2.2 (The E∞-decomposition of Gm+). Consider the pullback square

Gm+ A1
0+

A1
∞+ P1

+

in ModGm+(MSS)/1, and define Q ∈ ModGm+(MSS)/1 by the pullback square

Q 1

1 P1
+.

0

∞

There is a canonical map ∂ : Q→ Gm+ in ModGm+(MSS)/1.

Consider the Gm-equivariant vector bundle π2 : A1 ×A1 → A1, where Gm acts diagonally on A1 ×A1.
By P-homotopy invariance and Remark 2.1, the zero and diagonal sections A1 ⇒ P1 × A1 become
homotopic in ModGm+

(MSS)/A1
+
. Composing with the projection P1 × A1 → P1, we obtain commuting

triangles

A1
0+ P1

+

1
0

A1
∞+ P1

+

1

∞

in ModGm+
(MSS)/1. Together, these triangles define a retraction r : Gm+ → Q of ∂ in ModGm+

(MSS)/1.
The composite ∂ ◦ r : Gm+ → Q → Gm+ is thus an idempotent endomorphism in ModGm+

(MSS)/1; it
defines an idempotent element e in the ring π0Map(1,Gm+), whose image in π0Map(1,1) is the identity.
Hence, we obtain an E∞-ring structure on Q such that r : Gm+ → Q is an E∞-map, exhibiting Q as the
localization Gm+[e

−1]. Moreover, the augmentation Gm+ → 1 factors through r, since it sends e to 1.
Together with the E∞-map Gm+ → A1

0+ ×1 A1
∞+, we obtain an isomorphism of augmented E∞-rings

(2.3) Gm+ = Q×1 A1
0+ ×1 A1

∞+.

Construction 2.4 (The nonunital E∞-ring structure on Σ−1P1). By definition of Q, there are canonical
isomorphisms

fib(Q→ 1) = Σ−1 fib(P1
+ → 1) = Σ−1P1.

As a result, the augmented E∞-ring structure on Q from Construction 2.2 induces a nonunital E∞-ring
structure on Σ−1P1. The isomorphism (2.3) becomes a product decomposition

(2.5) Gm = Σ−1P1 × A1
0 × A1

∞

of nonunital E∞-rings in MSS .

3. The Hopf map

We define the Hopf map η : 1→ (Σ−1P1)⊗−1 so that

η ⊗ id(Σ−1P1)⊗2 : Σ−1P1 ⊗ Σ−1P1 → Σ−1P1

is the multiplication of the nonunital E∞-ring structure from Construction 2.4. In this section, we collect
various facts about the Hopf map and prove in particular the “easy” Milnor–Witt relations in MS.

Denote by ε : 1 → 1 the Euler characteristic of the Tate circle Σ−1P1, which is induced by the swap
automorphism of (Σ−1P1)⊗2. For a unit a ∈ O(S)×, denote by [a] : 1→ Σ−1P1 the composition

1
a−→ Gm+

r−→ Σ−1P1,

and by ⟨a⟩ : 1→ 1 the multiplication by a on (P1,∞). Note that [1] = 0, ⟨1⟩ = 1, and ⟨ab⟩ = ⟨a⟩⟨b⟩.
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In the Z-graded ring π0Map(1, (Σ−1P1)⊗∗), if α has degree m and β has degree n, then

αβ = εmnβα.

In particular, ε and ⟨a⟩ are central. Since η ⊗ id(Σ−1P1)⊗2 is a commutative pairing, we have

(3.1) ηε = εη = η,

which implies that η is also central.

Lemma 3.2. For any a ∈ O(S)×, ⟨a⟩ = η[a] + 1.

Proof. By (2.5), the multiplication m of Gm+ is zero on the summands A1⊗Σ−1P1. Thus, the restriction
to Σ−1P1 of the multiplication by a on Gm+ is given by the composite

Σ−1P1 = 1⊗ Σ−1P1 a⊗id−−−→ (1⊕ Σ−1P1)⊗ Σ−1P1 m−→ Σ−1P1.

Since the last map m is idΣ−1P1 + η, we obtain the desired formula. □

Lemma 3.3. The swap automorphism of P1 ⊗ P1 is ⟨−1⟩. Equivalently, ε = −⟨−1⟩.

Proof. Recall that the Thom space construction E 7→ ThS(E) is functorial and symmetric monoidal in E

[AHI24a, §3]. Therefore, under the isomorphism

Th(O)⊗ Th(O)⊗ Th(O) ≃ Th(O⊕ O⊕ O),

the swap automorphism and ⟨−1⟩ are identified with the automorphisms of Th(O⊕O⊕O) given by the
matrices 0 1 0

1 0 0
0 0 1

 and

−1 0 0
0 1 0
0 0 1

 .

Since SL3(Z) is perfect, it acts trivially on the ⊗-invertible object P3/P2 in hMSS . In particular, the
product of these two matrices acts as the identity. □

Theorem 3.4 (The Hopf relations). For any derived scheme S, the following relations hold in the graded
ring π0Map(1S , (Σ

−1P1)⊗∗):

(i) [ab] = [a] + [b] + η[a][b] for all a, b ∈ O(S)×.
(ii) η[a] = [a]η for all a ∈ O(S)×.
(iii) ηh = 0, where h = η[−1] + 2.

Proof. (i) Since the multiplication m of Gm+ is zero on the summands A1 ⊗ Σ−1P1, by (2.5), the map
[ab] decomposes as

1⊗ 1
a⊗b−−→ (1⊕ Σ−1P1)⊗ (1⊕ Σ−1P1)

m−→ 1⊕ Σ−1P1 → Σ−1P1.

The desired formula follows as m = id1 + idΣ−1P1 + idΣ−1P1 + η.
(ii) As noted above, the element η is central.
(iii) By (3.1) and Lemma 3.3, we have η = −η⟨−1⟩. By Lemma 3.2, we have ⟨−1⟩ = η[−1] + 1.

Combining the two formulas gives the desired relation. □

Corollary 3.5. For every a ∈ O(S)×, we have ⟨a⟩+ ⟨−a⟩ = ⟨1⟩+ ⟨−1⟩ in π0Map(1S ,1S).

Proof. By Lemma 3.2, this is equivalent to η[a](η[−1]+2) = 0, which follows from Theorem 3.4(ii,iii). □

Finally, we provide a more geometric description of the Hopf map (which is not used in the sequel):

Proposition 3.6. Under the canonical isomorphism P1⊗P1 ≃ P2/P1, the Hopf map η is the connecting
map of the cofiber sequence P1 → P2 → P2/P1.

Proof. Since the retraction r : Gm → Σ−1P1 is Gm-equivariant, η is induced by the action of Gm on P1:

η : Σ−1P1 ⊗ P1 ↪→ Gm+ ⊗ P1 act−−→ P1.

Furthermore, by (2.5), there is a commuting triangle

Gm+ ⊗ P1 P1.

(1⊕ Σ−1P1)⊗ P1

act

id+η
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Hence, in the commutative diagram

Gm+ ⊗ P1 Gm+ ⊗Gm+ ⊗ P1 Gm+ ⊗ (1⊕ Σ−1P1)⊗ P1 Gm+ ⊗ P1

A1
0+ ⊗ P1 A1

0+ ⊗ A1
0+ ⊗ P1 A1

0+ ⊗ 1⊗ P1 A1
0+ ⊗ P1,

δ⊗id id⊗(id+η)

δ⊗id id⊗id

where δ is the diagonal, the top composite is the shear automorphism, while the bottom composite is
the identity. This shows that the composite

A1
0+ ⊗ P1 ↪→ Gm+ ⊗ P1 shear−−−→ Gm+ ⊗ P1 ↠ A1

0+ ⊗ P1

is the identity.
By elementary blowup excision, the linear embedding P1 → P2 can be identified with the inclusion of

the 0-fiber P1 → ThP1(O(−1)). Consider the following diagram:

Σ−1ThP1(O(−1))/P1 (A1
0 ⊕ Σ−1P1)⊗ P1 0

Σ−1P1 ⊗ P1

Gm+ ⊗ P1 A1
∞+ ⊗ P1

P1 A1
0+ ⊗ P1 ThP1(O(−1)).

P1

∼
α proj

inc

shearη act

The two squares on the right are cartesian, as is the back face of the prism. By the above observation
about the shear map, the matrix of the middle column has the form(

id ∗
0 η

)
: (A1

0 ⊗ P1)⊕ (Σ−1P1 ⊗ P1)→ (A1
0 ⊗ P1)⊕ P1,

so that the right face of the prism commutes and is cartesian. We therefore obtain the isomorphism α
exhibiting the Hopf map as the fiber of P1 → ThP1(O(−1)).

To conclude, we must show that α is the canonical isomorphism. The latter is given by the zigzag of
isomorphisms

ThP1(O(−1))/P1 ← B/∂B → P1 ⊗ P1,

where B → PP1(O(−1)⊕O) is the blowup at (0, 0) and B → P1×P1 is the blowup at (0,∞). This zigzag
extends to isomorphisms of cartesian squares

Gm+ ⊗ P1 A1
∞+ ⊗ P1 Gm+ ⊗ P1 A1

∞+ ⊗ P1 Gm+ ⊗ P1 A1
∞+ ⊗ P1

A1
0 ⊗ P1 ThP1(O(−1))/P1 B0/∂B0 B/∂B A1

0 ⊗ P1 P1 ⊗ P1,

inc

shear ⇐=

inc

=⇒

inc

inc

where the isomorphisms between the upper rows are identities. Passing to fibers, we deduce that the
zigzag of isomorphisms between Σ−1ThP1(O(−1))/P1 and Σ−1P1 ⊗ P1 identifies α with the identity, i.e.,
it coincides with α. □

4. The Steinberg relation

The Steinberg embedding is the pointed map

st : (A1 − {0, 1})+ → Gm ×Gm, a 7→ (a, 1− a).

Here, Gm is pointed at 1, so that st sends the base point to (1, 1).

Theorem 4.1 (The Steinberg relation). For any derived scheme S, the composite

(A1 − {0, 1})+
st−→ Gm ∧Gm

r∧r−−→ Σ−2(P1 ∧ P1)

is nullhomotopic in MSS. Hence, for any a ∈ O(S)× such that 1− a ∈ O(S)×, we have [a][1− a] = 0 in
π0Map(1S , (Σ

−1P1)⊗2).
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Corollary 4.2. Let a, b ∈ O(S)× be units such that a+ b ∈ O(S)×. Then we have

⟨a⟩+ ⟨b⟩ = ⟨a+ b⟩+ ⟨ ab

a+ b
⟩

in π0Map(1S ,1S).

Proof. Dividing through by a+ b, we can assume b = 1− a. We must then prove

⟨a⟩+ ⟨1− a⟩ = 1 + ⟨a(1− a)⟩.
This follows from Theorem 3.4(i), Theorem 4.1, and Lemma 3.2. □

The rest of this section is devoted to the proof of Theorem 4.1. Recall that we denote by A1
0 = P1−∞

and A1
∞ = P1 − 0 the standard affine subschemes of P1, which are always pointed at 1 in what follows.

We will work in the ambient space

P = (P1 × P1)− {(∞, 0), (0,∞)} = (A1
0 × A1

0) ∪ (A1
∞ × A1

∞) ⊂ P1 × P1

with the four affine axes

X0 = A1
0 × 0, Y0 = 0× A1

0,

X∞ = A1
∞ ×∞, Y∞ =∞× A1

∞.

We define the following points and lines in P :

x = (1, 0), y = (0, 1), w = (1, 1),

u = (1,∞), v = (∞, 1), z = (∞,∞),

U = xwu, V = ywv, Z = xyz.

We further define T to be the triangle formed by the three lines U, V, Z and pointed at w:

T = colim(x ⊔ w ⊔ y ⇒ U ⊔ Z ⊔ V ).

The following figures depict the situation near (0, 0) and near (∞,∞):

Z

V

UY0

X0
0

w

y

x

T
Z

V

U Y∞

X∞
z

w v

u
T

Finally, we set

T0 = T ∩ (A1
0 × A1

0) = T − {u, v, z},
P̄ = P/(U ∨ V ).

Consider the following diagram of cofiber sequences in MSS :

(Z − {x, y, z})+ 0 Σ((Z − {x, y, z})+)

(Z − {x, y, z})+ T T/((Z − {x, y, z})+)

Gm ∧Gm P̄ P̄ /(Gm ∧Gm)

Σ−2(P1 ∧ P1) 0 Σ−1(P1 ∧ P1).

st

r∧r

The top left square commutes using the P-homotopy between the embedding Z−z ↪→ Z and the constant
map at y [AHI24a, Corollary 4.11] and the P1-homotopy between y and w in V . The composition of the
third column is thus the suspension of the Steinberg map.

Remark 4.3. We could alternatively make the top left square commute using x and U instead of y and
V . However, it is crucial that we contract the complement of the point z at infinity: the following proof
does not work if we instead contract Z − x ↪→ Z to y.
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We have Zariski pushout squares

T = T0 ∪ (T − {x, y}) with intersection T0 − {x, y},
P̄ = (A1

0 ∧ A1
0) ∪ (A1

∞ ∧ A1
∞) with intersection Gm ∧Gm,

compatible with the map T → P̄ , inducing coproduct decompositions

T/(T0 − {x, y}) = T0/(T0 − {x, y})⊕ (T − {x, y})/(T0 − {x, y}),
P̄ /(Gm ∧Gm) = (A1

0 ∧ A1
0)/(Gm ∧Gm)⊕ (A1

∞ ∧ A1
∞)/(Gm ∧Gm).

The suspension of the Steinberg map is therefore the sum of the two composites

(4.4)

Σ((Z − {x, y, z})+)

T0/(T0 − {x, y}) (T − {x, y})/(T0 − {x, y})

(A1
0 ∧ A1

0)/(Gm ∧Gm) (A1
∞ ∧ A1

∞)/(Gm ∧Gm)

Σ−1(P1 ∧ P1).

We will show that both composites are nullhomotopic using Tang’s Gysin maps [Tan] (see also [AHI24b,
Theorem 2.3] for a summary of their main properties).

The left composite in (4.4) is nullhomotopic. We show that the map T0/(T0−{x, y})→ Σ−1(P1 ∧P1)
is nullhomotopic. Consider the square

T0/(T0 − {x, y}) Thx(Nx/U ) ⊔x+ Thx⊔y(Nx⊔y/Z) ⊔y+ Thy(Ny/V )

(A1
0 ∧ A1

0)/(Gm ∧Gm) ThX0∨Y0(NX0∨Y0/P )/Thx⊔y(Nx⊔y/U∨V ),

gys

ν

gys

which commutes by the functoriality of Gysin maps. Here, ThX0∨Y0
(NX0∨Y0/P ) is defined by the pullback

square

ThX0∨Y0
(NX0∨Y0/P ) ThY0

(NY0/P )

ThX0(NX0/P ) Th0(N0/P ),

gys

gys

and the Gysin map from A1
0 ∧ A1

0 is defined using the functoriality of Gysin maps in triples [AHI24b,
Theorem 2.3(ii)]. By Lemma 4.6 below, the map (A1

0 ∧A1
0)/(Gm ∧Gm)→ Σ−1(P1 ∧ P1) factors through

the Gysin map. Since ν is trivially nullhomotopic, this proves the claim.
The right composite in (4.4) is nullhomotopic. By construction, the map

Σ((Z − {x, y, z})+)→ (T − {x, y})/(T0 − {x, y})
∼−→ T/T0

factors through Σ((Z − z)+), and we show that the map Σ((Z − z)+)→ Σ−1(P1 ∧ P1) is nullhomotopic.
There is a Zariski-local coproduct decomposition

T/T0 = Z/(Z − z)⊕ U/(U − u)⊕ V/(V − v).

We consider as before the commuting square

Z/(Z − z)⊕ U/(U − u)⊕ V/(V − v) Thz(Nz/Z)⊕ Thu(Nu/U )⊕ Thv(Nv/V )

(A1
∞ ∧ A1

∞)/(Gm ∧Gm) ThX∞∨Y∞(NX∞∨Y∞/P )/Thu⊔v(Nu⊔v/U∨V ).

gys

µ

gys

By Lemma 4.6, the map (A1
∞ ∧ A1

∞)/(Gm ∧Gm) → Σ−1(P1 ∧ P1) factors through the Gysin map. The
map µ is clearly nullhomotopic on the last two summands, but not on the first one. Instead, we claim
that the composite

Σ((Z − z)+)→ Z/(Z − z)
gys−−→ Thz(Nz/Z)

is nullhomotopic, which will complete the proof. Here, the first map is induced by the nullhomotopy of
the map (Z − z)+ → Z − z ↪→ Z, where Z is pointed at y (by the original choice of nullhomotopy in T ).
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If we identify Z with P1 so that x, y, z become 0, 1,∞, then, by Lemma 4.5, the above composite can be
identified with

Σ(A1
0+)→ ΣA1

0 → P1/A1
0 ≃ A1

∞/Gm → ΣGm
r−→ P1,

which is nullhomotopic as ΣA1
0 → A1

∞/Gm → P1 is even a split cofiber sequence.

Lemma 4.5. Under the isomorphism P1 = (P1, 1) ≃ (P1,∞) = Th(O) given by
(

1 0
−1 1

)
, the Gysin map

A1/Gm
gys0−−−→ Th0(N0/A1)

coincides with the composition

A1/Gm → ΣGm
r−→ P1.

Proof. This is the special case E = O of Proposition 4.7. □

Lemma 4.6. The map

(A1 ∧ A1)/(Gm ∧Gm)→ Σ(Gm ∧Gm)
r∧r−−→ Σ−1(P1 ∧ P1)

factors through the Gysin map

gysX∨Y/A2 : (A1 ∧ A1)/(Gm ∧Gm)→ ThX∨Y/x⊔y(NX∨Y/A2).

Proof. Recalling the definition of ThX∨Y as a pullback, we consider the cartesian squares

(A1 ∧ A1)/(Gm ∧Gm) (A1 ∧ A1)/(Gm ∧ A1) ThX∨Y/x⊔y(NX∨Y/A2) ThY/y(NY/A2)

(A1 ∧ A1)/(A1 ∧Gm) (A1 ∧ A1)/(A1 ∧ A1 − 0) ThX/x(NX/A2) Th0(N0/A2)

Σ(Gm ∧Gm) Σ(Gm ∧ A1) Σ−1(P1 ∧ P1) 0

Σ(A1 ∧Gm) Σ(A1 ∧ A1 − 0) 0 P1 ∧ P1.

gys
=⇒ gys

⇓

gys

⇓?

=⇒

To get the desired factorization, we see that it suffices to complete the following cube:

(A1 ∧ A1)/(Gm ∧ A1) ThY/y(NY/A2)

Σ(Gm ∧ A1) 0

(A1 ∧ A1)/(A1 ∧ A1 − 0) Th0(N0/A2)

Σ(A1 ∧ A1 − 0) Σ2(Gm ∧Gm) P1 ∧ P1.

gys

gys

gys

The front face is by definition the nullhomotopy of r ∧ i : ΣGm ∧A1 → P1 ∧P1 induced by the nullhomo-
topy of the inclusion i : A1 ↪→ P1. Identifying Th(O) with (P1, 1) and using the linearity of Gysin maps,
we can rewrite the back face as

A1/Gm ∧ A1 P1 ∧ A1

A1/Gm ∧ A1/Gm P1 ∧ P1.

gys0∧id

id∧gys0

gys0∧gys0

By Lemma 4.5, we can thus take the lower dashed arrow to be the identity to make the bottom face
commute. To complete the cube, we must show that the given nullhomotopy of the composite

A1/Gm ∧ A1 → ΣGm ∧ A1 r∧i−−→ P1 ∧ P1

is induced by some nullhomotopy of the vertical Gysin map id ∧ gys0 : P1 ∧ A1 → P1 ∧ P1. Again by
Lemma 4.5, the latter coincides with id ∧ i, so this is true by definition. □

A key ingredient in the above argument is the following refinement of the normalization property of
Gysin maps [AHI24a, Theorem 2.3(iii)], whose proof we learned from Longke Tang:
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Proposition 4.7 (Tang). Let E be a finite locally free sheaf on X ∈ SmS. Then the Gysin map

P(E⊕ O)

P(E⊕ O)− 0
=

V(E)
V(E)− 0

gys−−→ Th0(E) =
P(E⊕ O)

P(E)

of the zero section X ↪→ V(E) coincides, naturally in (S,X,E), with the map induced by the commuting
triangle

P(E⊕ O)− 0

P(E) P(E⊕ O)

of [AHI24a, Proposition 4.9].

Proof. Recall that the Gysin map gysX/Y : Y+ → ThX(NX/Y ) of a closed immersion X ↪→ Y in SmS is
constructed using the cofiber sequence

ThX(NX/Y )→
BlX×0(Y × P1)

BlX×0(Y × 0)
→ Y × P1

Y × 0

in Psbu(SmS)∗: it is induced by the embedding i1 : Y ↪→ BlX×0(Y × P1) and the P1-homotopy between
i1 and i0 in Y × P1. Moreover, the restriction to Y −X of this P1-homotopy lifts to the blowup, which
defines a nullhomotopy of the restriction to Y −X of gysX/Y , hence

gysX/Y : Y/(Y −X)→ ThX(NX/Y ).

When Y = V(E), this cofiber sequence is split by the retraction

q : BlX×0(V(E)× P1)→ P(E⊕ O), (v, t) 7→ [v : t].

More precisely, if P1 = P(O0 ⊕ O∞), a point of the blowup consists of σ : E → O, (x, y) : O0 ⊕ O∞ ↠ L,
and ϕ : (E⊗ L)⊕ O0 ↠ M such that (σ, x) vanishes on kerϕ, and its image by q is the surjection

E⊕ O = (E⊗ O∞)⊕ O0
(y,id)−−−→ (E⊗ L)⊕ O0

ϕ−→M.

This canonically identifies the Gysin map gys: V(E)+ → ThX(E) with the composite

V(E)+
i1−→ BlX×0(V(E)× P1)

BlX×0(V(E)× 0)

q−→ ThX(E),

which is the quotient map V(E)+ ↪→ P(E⊕ O)+ → ThX(E). The nullhomotopy of the restriction of gys
to V(E)− 0 is then defined by the image under q of the tautological P1-homotopy between

i1, i0 : (V(E)− 0)+ → BlX×0(V(E)× P1),

which is the P1-homotopy

(V(E)− 0)× P1 → P(E⊕ O), (v, t) 7→ [v : t],

between the inclusion V(E) − 0 ↪→ P(E ⊕ O) and the composite V(E) − 0 ↠ P(E) ↪→ P(E ⊕ O). Thus,
it remains to observe that this P1-homotopy is precisely the restriction to V(E) − 0 of the twisted P1-
homotopy

PP(E⊕O)−0(O(−1)⊕ O)→ P(E⊕ O)

from the proof of [AHI24a, Proposition 4.9]. □

Remark 4.8. This proof of the Steinberg relation simplifies significantly in MSA
1

S : first, we can replace
T and P̄ by T0 and A1

0 ∧A1
0, and second, the Gysin maps become purity isomorphisms, so the fact that

ν is nullhomotopic directly gives the result. It shows in fact that the suspended Steinberg map

Σ((A1 − {0, 1})+)→ Σ(Gm ∧Gm)

is nullhomotopic in PZar,A1(SmS).
The idea to use the purity isomorphism also appears in an unpublished proof of the Steinberg relation

by Powell [Pow02], which however like the proof of Hu and Kriz [HK01] is flawed: in both cases it is
only argued that the map Σ(A1 − {0, 1})→ Σ(Gm ∧Gm) is nullhomotopic in PZar,A1(SmS), which does
not imply the Steinberg relation. Valid proofs in A1-homotopy theory based on the idea of Hu and Kriz
were given in [Dru21, §2] and [Hoy18].
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5. The Grothendieck–Witt relations

Let E2(S) be the subgroup of SL2(S) generated by elementary matrices, and let E′
2(S) be its normal

closure in GL2(S) (which is strictly larger in general). We observe that the matrix
(
a 0
0 a−1

)
belongs to

E′
2(S) for any unit a ∈ O(S)×. Indeed,(

a 0
0 a−1

)
=

[(
a 0
0 1

)
,

(
0 1
−1 0

)]
and

(
0 1
−1 0

)
=

(
1 1
0 1

)(
1 0
−1 1

)(
1 1
0 1

)
∈ E2(S).

Lemma 5.1. The group E′
2(S) acts trivially on P1

+ in hMSS.

Proof. It suffices to show that the matrix
(
1 f
0 1

)
acts trivially for all f ∈ O(S). This is explicitly done in

the proof of P-homotopy invariance [AHI24a, Theorem 4.1(ii)]. □

The following result is a consequence of the already established Milnor–Witt relations when π0O(S) is
a field or a local ring whose residue field has at least 4 elements (see Remark 5.8(ii)), but not in general:

Proposition 5.2. For any a ∈ O(S)×, we have ⟨a2⟩ = 1 in MSS.

Proof. The endomorphism ⟨a2⟩ of (P1,∞) is a retract of the endomorphism of P1
+ induced by the matrix(

a 0
0 a−1

)
, which lies in E′

2(S), so the result follows from Lemma 5.1. □

Corollary 5.3 (The Grothendieck–Witt relations). For any derived scheme S, the following relations
hold in the group π0Map(1S ,1S):

(i) ⟨ab2⟩ = ⟨a⟩ for all a, b ∈ O(S)×.
(ii) ⟨a⟩+ ⟨−a⟩ = ⟨1⟩+ ⟨−1⟩ for all a ∈ O(S)×.
(iii) ⟨a⟩+ ⟨b⟩ = ⟨a+ b⟩+ ⟨(a+ b)ab⟩ for all a, b ∈ O(S)× with a+ b ∈ O(S)×.

Proof. (i) follows from Proposition 5.2, (ii) was already proved in Corollary 3.5, and (iii) follows from
Corollary 4.2 and (i). □

Definition 5.4. Let R be a commutative ring and let n ≥ 0. An element a ∈ R× is called a unit sum
of squares of exponent ≤ n if it is a square or if n ≥ 1 and a = b + c, where b, c ∈ R× are unit sums of
squares of exponent ≤ n− 1.

Lemma 5.5. If a ∈ O(S)× is a unit sum of squares of exponent ≤ n, then 2n(⟨a⟩ − 1) = 0 in MSS.

Proof. This follows from Corollary 5.3(i,iii) by induction on n. □

Proposition 5.6. If −1 is a unit sum of squares in each henselian local ring of S, then ⟨−1⟩ = 1 in
MSS [

1
2 ].

Proof. Since ⟨−1⟩2 = 1, the equality ⟨−1⟩ = 1 holds in MSS [
1
2 ] if and only if 1 + ⟨−1⟩ is a unit, which is

a Nisnevich-local property. By continuity, we may thus assume that −1 is a unit sum of squares in O(S).
Then the result follows from Lemma 5.5. □

Remark 5.7. Let R be a henselian local ring with residue field k. Then −1 is a unit sum of squares in
R in the following cases:

(i) k has characteristic zero and is not formally real.
(ii) k has odd characteristic.
(iii) k contains F2n for some n ≥ 2.

In cases (i) and (ii), −1 is a sum of squares in k and we can lift this sum to R, while in case (iii), −1 is
a unit sum of (2n − 1)st roots of unity in R. If F2 is algebraically closed in k, the property may or may
not hold: it holds in Z[i]h(1+i) but fails in Z/4. We do not know whether ⟨−1⟩ = 1 in MSZ/4[

1
2 ].

Remark 5.8 (Milnor–Witt K-theory). Let S be a derived scheme.

(i) Let KMW
∗ (S) be the graded ring generated by η in degree −1 and {[a] |a ∈ π0O(S)

×} in degree 1,
modulo the Hopf relations of Theorem 3.4 and the Steinberg relations of Theorem 4.1. By these
theorems, there is a map of graded rings

KMW
∗ (S)→ π0Map(1S , (Σ

−1P1)⊗∗).

Composing with A1-localization MSS → MSA
1

S , we recover the map constructed by Druzhinin in
[Dru21, Theorem 1.6]. Furthermore, if S is a field or a regular local ring over an infinite field
of characteristic not 2, A1-localization provides a retraction of this map, by Morel’s theorem
[Mor12, Corollary 6.3] and [GSZ16, Theorem 6.3].
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(ii) In [Sch17, Lemmas 4.14 and 4.16], Schlichting gives explicit presentations of the ring KMW
0 (S)

and of the module KMW
1 (S). We have in particular KMW

0 (S) = Z[π0O(S)
×]/I, where π0O(S)

× →
KMW

0 (S) sends a to ⟨a⟩ = η[a] + 1 and I is the ideal generated by the relations (ii) and (iii) of
Corollary 5.3. Let K̄MW

∗ (S) be the quotient of KMW
∗ (S) by the further relations η[a2] = 0 for all

a ∈ O(S)×, so that K̄MW
0 (S) = Z[π0O(S)

×]/Ī where Ī is generated by the relations (i)–(iii) of
Corollary 5.3. We thus get a map of graded rings

K̄MW
∗ (S)→ π0Map(1S , (Σ

−1P1)⊗∗).

If π0O(S) is a field or a local ring whose residue field has at least 4 elements, these further
relations already hold in KMW

∗ (S) by [Sch17, Lemma 4.4(2)], so that KMW
∗ (S) = K̄MW

∗ (S).

Remark 5.9 (Grothendieck–Witt theory). In forthcoming work, we define the “genuine” Grothendieck–
Witt theory of qcqs derived schemes (extending [CHN24, Definition 3.3.3] to non-classical schemes) and
show that it is represented by an absolute motivic E∞-ring spectrum KO. Hence, if S is qcqs, we have
maps of commutative rings

K̄MW
0 (S) π0Map(1S ,1S)

π0Map(1S ,KO) = π0GW(S),

where the horizontal map was defined in Remark 5.8(ii). The vertical map is given by A1-localization if
S is a field or a regular semilocal ring over a field of characteristic not 2 [BH21, Theorem 10.12]. The
diagonal map sends ⟨a⟩ to the symmetric bilinear form (OS , (x, y) 7→ axy), and it is an isomorphism if
S is a field, a local ring whose residue field has at least 3 elements [RS24, Theorem 1.3], or a connected
semilocal ring whose residue fields have at least 7 elements and characteristic not 2 [Gil19, Theorem 2.2].
In these cases, π0GW(S) is thus a retract of π0Map(1S ,1S) as a ring.

6. The positive eigenspace of the rational motivic sphere

Let S be a derived scheme. There is a splitting 1[ 12 ] = 1[ 12 ]
+ × 1[ 12 ]

− in CAlg(MSS), where 1[ 12 ]
± are

the ±1-eigenspaces of the swap automorphism on P1 ⊗ P1. It induces a splitting of categories

MSS [
1
2 ] = MSS [

1
2 ]

+ ×MSS [
1
2 ]

−.

By Lemma 3.3, the swap automorphism of P1 ⊗ P1 is ⟨−1⟩. Thus, a 2-periodic motivic spectrum E is a
1[ 12 ]

+-module (resp. a 1[ 12 ]
−-module) if and only if ⟨−1⟩ acts as the identity (resp. as minus the identity)

on E.

Remark 6.1.

(i) In MSS [
1
2 ]

+, we have ε = −1 and hence η = 0 by (3.1).

(ii) If E ∈ MSS is orientable, then E[ 12 ] is a 1[ 12 ]
+-module: in fact, by the projective bundle formula,

any automorphism of E ∈ Vect(S) acts as the identity on ThS(E)⊗ E [AHI24a, §6].

Theorem 6.2. For any derived scheme S, 1+
Q ∈ MSS is canonically oriented.

Corollary 6.3. For any derived scheme S, there is a unique isomorphism 1+
Q = HQ in CAlg(MSS).

Proof. It suffices to show that 1+
Q is an HQ-module, since both 1+

Q and HQ are idempotent algebras

[AHI24b, Theorem 9.16]. This follows from Theorem 6.2 and [AHI24b, Proposition 9.19]. □

For the proof of Theorem 6.2, we follow the strategy in Peter Arndt’s thesis [Arn16, §3.4.1].

Lemma 6.4.

(i) The canonical map ⊕
n≥0

Σn
P11→ Sym(P1)

becomes an isomorphism in (MSS)
+
Q .

(ii) The canonical map
1⊕ Σ−1P1 → Sym(Σ−1P1)

becomes an isomorphism in (MSS)
+
Q .

Proof. By definition, the swap automorphism of P1⊗P1 is the identity in MSS [
1
2 ]

+. Thus, the group Σn

acts trivially (up to homotopy) on (P1)⊗n, hence acts via the sign on (Σ−1P1)⊗n. Rationally, it follows
that (P1)⊗n → Symn(P1) is an isomorphism and that Symn(Σ−1P1) = 0 for n ≥ 2. □
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Proof of Theorem 6.2. Recall the retract diagram of augmented E∞-rings

Q
∂−→ Gm+

r−→ Q

from Construction 2.2, where Q = 1⊕ Σ−1P1. Note that the composite

1⊕ Σ−1P1 → Sym(Σ−1P1)
∂−→ Gm+

r−→ Q

is an isomorphism, where ∂ and r are maps in CAlg(MSS)/1. After tensoring with 1+
Q , the first map

becomes an isomorphism by Lemma 6.4(ii). Hence, Sym(Σ−1P1) is a retract of Gm+ in CAlg((MSS)
+
Q )/1.

Taking suspensions in CAlg((MSS)
+
Q )/1, we deduce that Sym(P1) is a retract of Pic+ in CAlg((MSS)

+
Q )/1.

We thus obtain an E∞-map

(6.5) Pic+ → Sym(ΣP11+
Q )

extending the canonical map P1
+ → Sym(ΣP11+

Q ). In particular, 1+
Q is canonically oriented. □

Remark 6.6. By the universal property of the K-theory of derived schemes proved by Annala and Iwasa
[AI23, Theorem 5.3.3], the E∞-map (6.5) induces a morphism of motivic E∞-ring spectra

KGL→ Sym(ΣP11+
Q )[u

−1] =
⊕
n∈Z

Σn
P11+

Q ,

where u : P1 → Sym(ΣP11+
Q ) is the tautological map and the equality follows from Lemma 6.4(i). Under

the identification 1+
Q = HQ of Corollary 6.3, this recovers the Chern character of [AHI24b, Remark 9.20].

7. Beilinson motives

We give several characterizations of the full subcategory ModHQ(MSS) ⊂ MSS .

Proposition 7.1. If S is any derived scheme, then 1ét[ 12 ]
− = 0 in MSétS . Hence, 1ét

Q = HQ.

Proof. It suffices to prove this over Z[i] and Z[ζ3], since these generate an étale covering sieve of Z. In
both rings, −1 is a unit sum of squares, so the result follows from Proposition 5.6. The last statement
follows from Corollary 6.3 and the fact that HQ is an étale sheaf. □

Proposition 7.2. Every HQ-module in MSS satisfies étale descent.

Proof. It suffices to check that the sieve generated by a surjective finite étale map f : T → S becomes an
isomorphism in ModHQ(MSS), and we may assume S affine. By Atiyah duality [AHI24b, Theorem 5.9],
the canonical map αf : f♯ → f∗ is an isomorphism. Let τf be the endomorphism of idMSS

given by

id
unit−−→ f∗f

∗ αf←−− f♯f
∗ counit−−−−→ id.

By [AHI24b, Proposition 5.12(ii)], if E is an R-module, then τf : E → E is R-linear and is multiplication
by τf : R → R (hence by τf : 1 → 1). For R = HZ, we claim that τf is multiplication by the degree of
f . This is known if S is smooth over Z, and we can reduce to this case since the stack of finite étale
schemes is left Kan extended from smooth Z-algebras and τf is compatible with base change [AHI24b,
Proposition 5.12(i)]. Thus, since the degree of f is everywhere positive, the identity of ModHQ(MSS) is
a retract of f∗f

∗, so f∗ is conservative. But f∗ sends the sieve generated by f to an isomorphism, so we
are done. □

Corollary 7.3. Let S be a derived scheme. Then ModHQ(MSS) = (MSétS )Q.

Proof. Combine Propositions 7.1 and 7.2. □

Theorem 7.4. Let S be a derived scheme and let E ∈ (MSS)Q be a rational motivic spectrum over S.
The following conditions are equivalent:

(i) E is an HQ-module.
(ii) E admits a structure of MGL-module.
(iii) E is orientable.
(iv) The swap automorphism of Σ2

P1E is the identity.
(v) The involution ⟨−1⟩ : E → E is the identity.
(vi) The Hopf map η : ΣP1E → ΣE is zero.
(vii) E satisfies étale descent.

Moreover, these conditions always hold if −1 is a unit sum of squares in each henselian local ring of S
(see Definition 5.4 and Remark 5.7).



REMARKS ON THE MOTIVIC SPHERE WITHOUT A1-INVARIANCE 13

Proof. The equivalence (i) ⇔ (ii) was proved in [AHI24b, Proposition 9.19]. Since MGL is an orientable
E∞-ring [AHI24a, §7], any MGL-module is orientable, hence (ii) ⇒ (iii). The equivalence (i) ⇔ (iv) is
Corollary 6.3 and the equivalence (i) ⇔ (vii) is Corollary 7.3. The equivalence (iv) ⇔ (v) follows from
Lemma 3.3 and the implication (vi) ⇒ (v) from Lemma 3.2. The implications (iii) ⇒ (iv) ⇒ (vi) follow
from Remark 6.1 and complete the circle. Finally, the last statement follows from Proposition 5.6. □

Remark 7.5. In Theorem 7.4, the implications (ii) ⇒ (iii) ⇒ (vi) ⇒ (iv) ⇔ (v) hold for any E ∈ MSS
(the second by Proposition 3.6), and the implications (vii) ⇒ (v) ⇒ (vi) hold for any E ∈ MSS [

1
2 ].

We note that the Steinberg relation only enters the proof of Theorem 7.4 when dealing with Z[ζ3] in
Proposition 7.1. Thus, it is not needed to prove the equivalence of (i)–(vi), nor to prove the equivalence
with (vii) if S is a Z[ 12 ]-scheme.
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[CD19] D.-C. Cisinski and F. Déglise, Triangulated categories of mixed motives, Springer Monographs in Mathematics,

Springer, 2019, preprint arXiv:0912.2110
[CHN24] B. Calmès, Y. Harpaz, and D. Nardin, A motivic spectrum representing hermitian K-theory, 2024,

arXiv:2402.15136
[Dru21] A. Druzhinin, The naive Milnor–Witt K-theory relations in the stable motivic homotopy groups over a base,

Ann. K-Theory 6 (2021), no. 4, pp. 651–671, preprint arXiv:1809.00087
[Gil19] S. Gille, On quadratic forms over semilocal rings, Trans. Amer. Math. Soc. 371 (2019), no. 2, pp. 1063–1082

[GSZ16] S. Gille, S. Scully, and C. Zhong, Milnor–Witt K-groups of local rings, Adv. Math. 286 (2016), pp. 729–753,

preprint arXiv:1501.07631
[HK01] P. Hu and I. Kriz, The Steinberg relation in A1-stable homotopy, Int. Math. Res. Notices (2001), no. 17, pp. 907–

912

[Hoy18] M. Hoyois, The Steinberg relation, 2018, https://hoyois.app.uni-regensburg.de/papers/steinberg.pdf
[Mor12] F. Morel, A1-Algebraic Topology over a Field, Lecture Notes in Mathematics, vol. 2052, Springer, 2012

[Pow02] G. Powell, Zariski excision and the Steinberg relation, 2002, https://math.univ-angers.fr/~powell/documents/
2002/steinberg.pdf

[RS24] R. Rogers and M. Schlichting, On the presentation of the Grothendieck–Witt group of symmetric bilinear forms

over local rings, Math. Z. 307 (2024), no. 41, preprint arXiv:2311.03962
[Sch17] M. Schlichting, Euler class groups and the homology of elementary and special linear groups, Adv. Math. 320

(2017), pp. 1–81, preprint arXiv:1502.05424
[Tan] L. Tang, The P1-motivic Gysin map, in preparation

Fakultät für Mathematik, Universität Regensburg, Universitätsstr. 31, 93040 Regensburg, Germany
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