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Let k be a commutative ring, G a reductive algebraic group over k, and X a smooth
affine k-scheme. We are interested in understanding the set of isomorphism classes
of generically trivial G-torsors over X. By a theorem of Nisnevich [7], if k is regular,
this is equivalently the set H1

Nis(X,G) of G-torsors that are trivial locally in the
Nisnevich topology.

Theorem 1 ([2, 3]). Let k be an infinite field, G an isotropic reductive k-group,
and X a smooth affine k-scheme. Then there is a bijection

H1
Nis(X,G) ' [X,BG]A1 ,

where the right-hand side denotes the set of maps in the A1-homotopy category
over k [6].

If G is GLn, SLn, or Sp2n, the above result holds for k any commutative ring
which admits a regular ring homomorphism from a Dedekind domain with perfect
residue fields.

The usefulness of Theorem 1 stems from the fact that the right-hand side is
more amenable to computation, using tools from (A1-)homotopy theory.

The prototypical case of Theorem 1, when G = GLn and k is a perfect field, was
established by Morel [5]. This was extended to G = SLn by Asok and Fasel [1],
and a simplified proof applying also to G = Sp2n was later found by Schlichting
[9], still under the assumption that k is a perfect field. Our approach is completely
independent of Morel’s and allows us to remove all assumptions on k, except the
(obviously necessary) assumption that H1

Nis(−, G) is A1-homotopy invariant on
smooth affine k-schemes. In other words, our proof of Theorem 1 proceeds in two
independent steps:

Theorem 2. Theorem 1 holds for any commutative ring k and k-group scheme
G such that H1

Nis(−, G) is A1-homotopy invariant on smooth affine k-schemes.

Theorem 3. If k is an infinite field and G is an isotropic reductive k-group, then
H1

Nis(−, G) is A1-homotopy invariant on smooth affine k-schemes.

The second part of Theorem 1 follows from Theorem 2 and the partial solution
of the Bass–Quillen conjecture by Lindel and Popescu [8].

The proof of Theorem 3 is a variant of arguments of Colliot-Thélène and Ojan-
guren [4], combined with an analog of Quillen’s patching theorem for G-torsors.

The proof of Theorem 2 relies on a new characterization of the Nisnevich topol-
ogy. Recall that a Nisnevich cover is an étale cover that is surjective on k-points
for every field k.

Theorem 4. The Nisnevich topology on the category of schemes is generated by
the following types of covers:

(1) open covers;
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(2) {SpecB → SpecA, SpecA[1/f ] ↪→ SpecA}, where A→ B is an étale ring
homomorphism inducing an isomorphism A/fA ∼= B/fB.

On the category of affine schemes, covers of type (2) suffice.

If in (2) we replace SpecA[1/f ] ↪→ SpecA by an arbitrary open immersion
U ↪→ SpecA, requiring SpecB → SpecA to be an isomorphism over the closed
complement of U , then the result is well known and goes back to Morel and
Voevodsky [6]. Thus, the main innovation of Theorem 4 is that it suffices to
consider complements of hypersurfaces, which leads to a simple set of generators
for the Nisnevich topology on affine schemes.
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