REMARKS ON ÉTALE MOTIVIC STABLE HOMOTOPY THEORY

TOM BACHMANN, WITH AN APPENDIX BY TOM BACHMANN AND MARC HOYOIS

CONTENTS

1.	Introduction	1
2.	Invertible retracts of symmetric objects	1
3.	Étale topology	2
4.	Real étale topology	3
Ap	pendix A. Vanishing of $\mathcal{SH}^{\wedge}_{\acute{e}t}(\mathbb{F}_p)^{\wedge}_p$	3
Ref	erences	4

1. INTRODUCTION

We strengthen some results in étale (and real étale) motivic stable homotopy theory, by eliminating finiteness hypotheses, additional localizations and/or extending to spectra from $H\mathbb{Z}$ -modules. The main results are Theorem 3.1 (proving rigidity in ℓ -adic étale motivic stable homotopy theory for any $\mathbb{Z}[1/\ell]$ -scheme), Theorem 4.2 (proving rigidity in real étale motivic stable homotopy theory for any scheme) and Theorem A.1 (proving *p*-periodicity in étale motivic stable homotopy theory of characteristic *p*-schemes).

Notation and conventions. Given a scheme S, we denote by $S_{\acute{e}t}^{\wedge}$ its hypercompleted étale ∞ -topos and by $\operatorname{Sp}(S_{\acute{e}t}^{\wedge})$ the stabilization thereof. In contrast, we denote by $\mathcal{SH}_{\acute{e}t}^{\wedge}(S)$ the localization of the motivic stable category $\mathcal{SH}(S)$ at the (desuspended) étale hypercovers, and similarly denote by $\mathcal{SH}_{\acute{e}t}^{\wedge S^1}(S)$ the localization of motivic S^1 -spectra. We also write $\operatorname{Sp}(\mathcal{Sm}_{S,\acute{e}t})$ for the category of spectral étale sheaves on the site \mathcal{Sm}_S , and $\operatorname{Sp}(\mathcal{Sm}_{S,\acute{e}t}^{\wedge})$ for its hypercompletion. Given a stable ∞ -category \mathcal{C} , we denote by \mathcal{C}_p^{\wedge} the subcategory of *p*-complete objects.

We freely use the language and notation of [Lur17b, Lur17a].

2. Invertible retracts of symmetric objects

Proposition 2.1. Let C be a symmetric monoidal ∞ -category, $I \in C$ invertible and $I \xrightarrow{e} X \xrightarrow{f} I$ a retraction. If X is symmetric (i.e. the cyclic permutation on $X^{\otimes n}$ is homotopic to the identity for some $n \geq 2$) then e and f are inverse equivalences.

Proof. Since a (2n-1)-cycle is a product of two *n*-cycles, we may assume that X is *n*-symmetric where n is odd; then also I^{-1} is *n*-symmetric [Dug14, Lemma 4.17]. It follows that $X \otimes I^{-1}$ is *n*-symmetric, whence (replacing X by $X \otimes I^{-1}$) we may assume that $I = \mathbb{1}$.

First we offer a slightly simpler proof in the case that C is semiadditive and idempotent complete, and the tensor product distributes over sums. In this case we can write $X \simeq \mathbb{1} \oplus X'$, and so $X^{\otimes n} \simeq \mathbb{1} \oplus X'^{\oplus n} \oplus \ldots$, where the symmetric group action restricts to the summand $X'^{\oplus n}$ and yields the canonical action for the \oplus symmetric monoidal structure. In particular X' is \oplus -symmetric, which implies that 1 = 0 as endomorphisms of X', i.e. X' = 0 as desired.

In general, consider the maps

 $e': X \simeq X \otimes \mathbb{1}^{\otimes n-1} \xrightarrow{\operatorname{id} \otimes e^{\otimes n-1}} X^{\otimes n} \quad \text{and} \quad f': X^{\otimes n} \xrightarrow{\operatorname{id} \otimes f^{\otimes n-1}} X \otimes \mathbb{1}^{\otimes n-1} \simeq X.$

Then $f'e' \simeq \operatorname{id} \otimes \operatorname{id}^{\otimes n-1} \simeq \operatorname{id}$. On the other hand if σ is the cyclic permutation of $X^{\otimes n}$, then $f'\sigma e'$ is the tensor product of $f: X \to 1$, n-2 copies of $\operatorname{id} : 1 \to 1$ and $e: 1 \to X$, which (up to unit equivalences) is the same as ef. Consequently if $\sigma \simeq \operatorname{id}$ then $\operatorname{id} \simeq f'e' \simeq f'\sigma e' \simeq ef$, so that e, f are indeed inverse equivalences.

Example 2.2. Since invertible objects are symmetric [Dug14, Lemma 4.17], Proposition 2.1 strengthens [Bac18, Lemma 30].

Date: March 19, 2021.

Example 2.3. Since $S^{2,1} \in Spc(S)_*$ is 3-symmetric (see e.g. [Hoy17, Lemma 6.3]), $\mathbb{G}_m \simeq S^{-1} \wedge S^{2,1} \in S\mathcal{H}^{S^1}(S)$ is also 3-symmetric.

3. Étale topology

The following result was proved in [Bac20, Theorem 6.5] under additional finiteness assumptions, and with an additional localization on the middle category.

Theorem 3.1. Let S be a scheme with $\ell \in \mathcal{O}_S^{\times}$. Then the canonical functors

$$\operatorname{Sp}(S_{\acute{e}t}^{\wedge})_{\ell}^{\wedge} \to \mathcal{SH}_{\acute{e}t}^{\wedge S^{1}}(S)_{\ell}^{\wedge} \to \mathcal{SH}_{\acute{e}t}^{\wedge}(S)_{\ell}^{\wedge}$$

are equivalences.

We can also remove finiteness assumptions from related rigidity results. For example, denote by $D(S_{\acute{e}t}^{\wedge}, \mathbb{Z}/\ell)$ the unbounded derived category sheaves of \mathbb{Z}/ℓ -modules, and by $DA_{\acute{e}t}^{\wedge}(S, \mathbb{Z}/\ell)$ Ayoub's category of étale motives without transfers [Ayo14, §3]. The equivalence of the outer two categories in the following result was proved in [Ayo14, Theoreme 4.1] under additional finiteness assumptions.

Corollary 3.2. Let S be a scheme with $\ell \in \mathcal{O}_S^{\times}$. Then the canonical functors

$$D(S^{\wedge}_{\acute{e}t}, \mathbb{Z}/\ell) \to DA^{\wedge S^1}_{\acute{e}t}(S, \mathbb{Z}/\ell) \to DA^{\wedge}_{\acute{e}t}(S, \mathbb{Z}/\ell)$$

are equivalences.

Proof. Writing $H\mathbb{Z}/\ell \in \operatorname{CAlg}(\operatorname{Sp}(S_{\acute{et}}^{\wedge})_{\ell}^{\wedge})$ for the Eilenberg–MacLane spectrum, the result follows from the equivalences $D(S_{\acute{et}}^{\wedge}, \mathbb{Z}/\ell) \simeq \operatorname{Mod}_{H\mathbb{Z}/\ell}(\operatorname{Sp}(S_{\acute{et}}^{\wedge})_{\ell}^{\wedge}), DA_{\acute{et}}^{\wedge S^{1}}(S, \mathbb{Z}/\ell) \simeq \operatorname{Mod}_{H\mathbb{Z}/\ell}(S\mathcal{H}_{\acute{et}}^{\wedge S^{1}}(S)_{\ell}^{\wedge})$ and $DA_{\acute{et}}^{\wedge}(S, \mathbb{Z}/\ell) \simeq \operatorname{Mod}_{H\mathbb{Z}/\ell}(S\mathcal{H}_{\acute{et}}^{\wedge}(S)_{\ell}^{\wedge})$. The third is a formal consequence of the second, and the first two follow from [Lur18, Theorem 2.1.2.2].

We recall some ingredients used in the proof of Theorem 3.1.

(0) If $F : \mathcal{C} \to \mathcal{D}$ is a cocontinuous, symmetric monoidal functor of presentably symmetric monoidal, stable ∞ -categories and \mathcal{C} is ℓ -complete (i.e. $\mathcal{C} \simeq \mathcal{C}_{\ell}^{\wedge}$), then so is \mathcal{D} . Indeed for objects $X, Y \in \mathcal{D}$, the functor $F(-) \otimes X : \mathcal{C} \to \mathcal{D}$ admits a right adjoint r_X , and hence $\operatorname{map}_{\mathcal{D}}(X,Y) \simeq \operatorname{map}_{\mathcal{C}}(\mathbb{1}, r_X Y)$ is ℓ -complete as needed. In particular, ℓ -completion commutes with localization of stable, presentably symmetric monoidal ∞ -categories.

(1) The functors

$$\operatorname{Sp}(S_{\acute{e}t}^{\wedge})_{\ell}^{\wedge}, \mathcal{SH}_{\acute{e}t}^{\wedge S^{1}}(S)_{\ell}^{\wedge}, \mathcal{SH}_{\acute{e}t}^{\wedge}(S)_{\ell}^{\wedge}: \mathcal{S}ch_{\mathbb{Z}[1/\ell]}^{\operatorname{op}} \to \mathcal{C}at_{\infty}$$

are Zariski sheaves. This implies that they are right Kan extended from their restriction to affine $\mathbb{Z}[1/\ell]$ -schemes (see e.g. [Hoy15, Lemma C.3]), which is what we shall use. The descent properties are established by arguments entirely analogous to e.g. [Hoy17, Proposition 4.8] [AGV20, §2.3]; in fact all three functors satisfy étale hyperdescent.

(2) The functor

$$\mathcal{E}t^{\mathrm{fp}}_{(-)}: \mathcal{S}ch^{\mathrm{op}} \to \mathcal{C}at_{\infty}$$

(sending X to the category of finitely presented étale X-schemes) is *continuous*: it converts cofiltered limits of quasi-compact quasi-separated schemes with affine transition maps into colimits [GAV72, Lemme VII.5.6]. This implies that also

$$\mathcal{P}(\mathcal{E}t^{\mathrm{fp}}_{(-)}): \mathcal{S}ch^{\mathrm{op}} \to Pr^L$$

is continuous. From this one deduces the same result for spectral presheaves. The category of étale *sheaves* is obtained by inverting the nerves of (finitely presented) étale covers, which must be pulled back from a finite stage by continuity of $\mathcal{E}t_{(-)}$ and quasi-compactness. It follows that

$$\operatorname{Sp}((-)_{\acute{e}t}): \operatorname{Sch}^{\operatorname{op}} \to Pr^L$$

is continuous. Beware the absence of hypercompletion! By similar arguments, the functor

$$\mathcal{SH}^{S^1}_{\acute{e}t}(-): \mathcal{S}\mathrm{ch}^{\mathrm{op}} \to Pr^L$$

is continuous (again no hypercompletion). From this one easily deduces (e.g. using (0)) that also $\operatorname{Sp}((-)_{\ell t})^{\wedge}_{\ell}, \mathcal{SH}^{S^1}_{\ell t}(-)^{\wedge}_{\ell}$ are continuous.

(3) Finally recall the object $\hat{\mathbb{1}}_{\ell}(1)[1] \in \operatorname{Sp}(S_{\acute{e}t}^{\wedge})_{\ell}^{\wedge}$ and the map $\sigma : \mathbb{G}_m \to \hat{\mathbb{1}}_{\ell}(1)[1] \in \mathcal{SH}_{\acute{e}t}^{\wedge S^1}(S)_{\ell}^{\wedge}$ from [Bac20, §3].

Proof of Theorem 3.1. We first show that $\sigma : \mathbb{G}_m \to \hat{1}_{\ell}(1)[1] \in S\mathcal{H}_{\ell t}^{\wedge S^1}(S)_{\ell}^{\wedge}$ is an equivalence. By stability of σ under base change, we reduce to $S = Spec(\mathbb{Z}[1/\ell])$, and by [Bac20, Corollary 5.12] we reduce to S = Spec(k), where k is a separably closed field. In this situation $\sigma : \mathbb{G}_m \to \hat{1}_{\ell}(1)[1]$ admits a section [Bac20, proof of Theorem 6.5], and thus σ is an equivalence by Proposition 2.1 and Example 2.3.

We have thus proved that $\mathcal{SH}_{\acute{e}t}^{\wedge S^1}(S)_{\ell}^{\wedge} \simeq \mathcal{SH}_{\acute{e}t}^{\wedge}(S)_{\ell}^{\wedge}$. In particular the theorem holds whenever [Bac20, Theorem 6.6] applies, so for example (*) if S is finite type over $\mathbb{Z}[1/\ell]$ or the spectrum of a separably closed field of characteristc $\neq \ell$.

To prove that $\operatorname{Sp}(S_{\acute{e}t}^{\wedge})_{\ell}^{\wedge} \simeq \mathcal{SH}_{\acute{e}t}^{\wedge S^{1}}(S)_{\ell}^{\wedge}$, we may assume by right Kan extension that S is affine. In this case we can write $S = \lim_{\alpha} S_{\alpha}$, where each S_{α} is affine (so in particular quasi-compact quasiseparated) and of finite type over $\mathbb{Z}[1/\ell]$. Denote by V_{α} (respectively V) the class of ∞ -connective maps in $\operatorname{Sp}(S_{\alpha,\acute{e}t})$ (respectively $\operatorname{Sp}(S_{\acute{e}t})$) and by W_{α} (respectively W) the ∞ -connective maps in $\operatorname{Sp}(S_{\alpha,\acute{e}t})_{\ell}^{\wedge}$ (respectively W) the ∞ -connective maps in $\operatorname{Sp}(S_{\alpha,\acute{e}t})_{\ell}^{\wedge}$ is the initial object of $Pr_{\operatorname{Sp}(S_{\alpha,\acute{e}t})_{\ell}^{\wedge}}^{L}$ inverting V_{α}), and similarly $\mathcal{SH}_{\acute{e}t}^{\wedge S^{1}}(S_{\alpha})_{\ell}^{\wedge} \simeq \mathcal{SH}_{\acute{e}t}^{S^{1}}(S_{\alpha})_{\ell}^{\wedge}[W_{\alpha}^{-1}]$. By continuity, $\operatorname{Sp}(S_{\acute{e}t})_{\ell}^{\wedge} \simeq \operatorname{colim}_{\alpha} \operatorname{Sp}(S_{\alpha,\acute{e}t})_{\ell}^{\wedge}$. Consider the commutative diagram in Pr^{L}

The morphism a is a localization (namely at the union of the pullbacks to S of the classes V_{α}), and ba is a localization (namely at V); hence so is b. Similarly b' is a localization. The morphism c is an equivalence, being a colimit of equivalences by (*). We deduce that d is a localization. To conclude the proof, it thus suffices to prove that d is conservative. Since equivalences of hypercomplete sheaves may be tested on stalks (essentially by definition of hypercompleteness, this reduces to the well-known special case of sheaves of abelian groups), an object of $\operatorname{Sp}(S_{\acute{e}t}^{\wedge})_{\ell}^{\wedge}$ vanishes if and only if its image under the pullback to $\operatorname{Sp}(\bar{s}_{\acute{e}t}^{\wedge})_{\ell}^{\wedge}$ vanishes, for every geometric point $\bar{s} = Spec(\bar{k}) \to S$ (where \bar{k} is a separably closed field). Since formation of d is natural in S, we are reduced to the case $S = \bar{s}$, which was already established (see (*)).

Corollary 3.3. Let S be a scheme with $\ell \in \mathcal{O}_S^{\times}$. Then $\operatorname{Sp}(S_{\acute{e}t}^{\wedge})_{\ell}^{\wedge} \to \operatorname{Sp}((S \times \mathbb{A}^1)_{\acute{e}t}^{\wedge})_{\ell}^{\wedge}$ is fully faithful. (In other words, " ℓ -adic hyper-étale cohomology with spectral coefficients is \mathbb{A}^1 -invariant".)

Proof. This holds for $\mathcal{SH}^{\wedge}_{\acute{e}t}(S)^{\wedge}_{\ell}$ essentially by construction.

4. Real étale topology

Recall the real étale topology from [Sch94]. Denote by $S_{r\acute{e}t}$ the small real étale ∞ -topos of S (not hypercompleted), by $\mathcal{SH}_{r\acute{e}t}(S)$ the localization of $\mathcal{SH}(S)$ at the real étale covers, and so on.

Remark 4.1. If dim $S < \infty$, then $S_{r\acute{e}t}$ and $S_{m_{S,r\acute{e}t}}$ are hypercomplete [ES19, Theorem B.13]. It follows that in this situation, our notation coincides with the one from [Bac18] (where everything is hypercompleted and finite dimensional by definition).

The following result strengthens [Bac18, Theorem 35], by removing ρ -inversion from $\mathcal{SH}_{r\acute{e}t}^{S^1}(S)$ and finiteness assumptions from S.

Theorem 4.2. Let S be any scheme. Then

$$\mathcal{SH}(S)[\rho^{-1}] \simeq \mathcal{SH}_{r\acute{e}t}(S) \simeq \mathcal{SH}_{r\acute{e}t}^{S^{*}}(S) \simeq \operatorname{Sp}(S_{r\acute{e}t}).$$

In particular $\rho: S^1 \to \mathbb{G}_m \in \mathcal{SH}^{S^1}_{r\acute{e}t}(S)$ is an equivalence.

Proof. By Zariski descent and continuity (see §3 and [Sch94, proof of Proposition 3.4.1]), we may assume that S is finite type over \mathbb{Z} . In this case by [Bac18, Theorem 35], only the last statement requires proof. The proof of [Bac18, Proposition 29] constructs a retraction $S^0 \xrightarrow{\rho} \mathbb{G}_m \to S^0 \in Spc_{ret}(S)_*$. The result thus follows from Proposition 2.1 and Example 2.3.

APPENDIX A. VANISHING OF $\mathcal{SH}^{\wedge}_{\acute{e}t}(\mathbb{F}_p)^{\wedge}_p$

Theorem A.1. We have $1/p \simeq 0 \in S\mathcal{H}_{\acute{e}t}^{\wedge S^1}(\mathbb{F}_p)$. In particular if $X \in Sch_{\mathbb{F}_p}$ then

$$\mathcal{SH}_{\acute{e}t}^{\wedge S^{+}}(X)_{p}^{\wedge} = * = \mathcal{SH}_{\acute{e}t}^{\wedge}(X)_{p}^{\wedge}$$

Before the proof, we need some preparation. The category $\operatorname{Sp}(\mathcal{Sm}_{S,\acute{et}}^{\wedge})$ of étale hypersheaves of spectra on \mathcal{Sm}_S admits a canonical non-degenerate *t*-structure (see e.g. [Bac20, §2.2]). Denote by $L_{\acute{et},\mathrm{mot}}^{\wedge}$ the localization endofunctor of $\operatorname{Sp}(\mathcal{Sm}_{S,\acute{et}}^{\wedge})$ corresponding to the \mathbb{A}^1 -equivalences, so that the category of local objects is $\mathcal{SH}_{\acute{et}}^{\wedge S^1}(S)$.

Lemma A.2. If $E \in \operatorname{Sp}(\mathcal{Sm}^{\wedge}_{\mathbb{F}_n,\acute{e}t})_{\geq 0}$, then $L^{\wedge}_{\acute{e}t, \operatorname{mot}} E/p \in \operatorname{Sp}(\mathcal{Sm}^{\wedge}_{\mathbb{F}_n,\acute{e}t})_{\geq -1}$.

Proof. Denote by $L_{\mathbb{A}^1}E$ the presheaf

 $X \mapsto \operatorname{colim}_{n \in \Delta^{\operatorname{op}}} E(X \times \mathbb{A}^n).$

Then $L_{\mathbb{A}^1}E$ is \mathbb{A}^1 -invariant and $E \to L_{\mathbb{A}^1}E$ is an \mathbb{A}^1 -equivalence [MV99, Corollaries 2.3.5 and 2.3.8]. Moreover since $\operatorname{cd}(\mathbb{F}_p) < \infty$, étale hypersheaves are closed under colimits in presheaves (see e.g. [Bac20, Lemma 2.16]), and thus $L_{\acute{e}t, \mathrm{mot}}^{\wedge}E \simeq L_{\mathbb{A}^1}E$. Since $\operatorname{Sp}_{\geq -1}$ is closed under colimits, it thus suffices to show that for $X \in \operatorname{Sm}_{\mathbb{F}_p}$ affine we have $(E/p)(X) \in \operatorname{Sp}_{\geq -1}$. This follows from [Bac20, Lemma 2.7(2)], using that affine \mathbb{F}_p -schemes have p-étale cohomological dimension ≤ 1 [GAV72, Théorème X.5.1].

Proof of Theorem A.1. Only the first statement requires proof. Since $\operatorname{cd}(\mathbb{F}_p) < \infty$, $\mathcal{SH}_{\acute{e}t}^{\wedge S^1}(\mathbb{F}_p)$ is compactly generated by representables [Bac20, Corollary 5.7] and thus $L_{\acute{e}t, \mathrm{mot}}^{\wedge} : \operatorname{Sp}(\mathcal{Sm}_{S,\acute{e}t}^{\wedge}) \to \operatorname{Sp}(\mathcal{Sm}_{S,\acute{e}t}^{\wedge})$ preserves colimits. Let $H\mathbb{Z} \in \operatorname{Sp}(\mathcal{Sm}_{S,\acute{e}t}^{\wedge})_{\geq 0}$ denote the Eilenberg–MacLane spectrum. We seek to prove that $L_{\acute{e}t, \mathrm{mot}}^{\wedge}(\mathbb{1}/p) = 0$. By Lemma A.2 we have $L_{\acute{e}t, \mathrm{mot}}^{\wedge}(\mathbb{1}/p) \in \operatorname{Sp}(\mathcal{Sm}_{S,\acute{e}t}^{\wedge})_{\geq -1}$, and hence $L_{\acute{e}t, \mathrm{mot}}^{\wedge}(\mathbb{1}/p) = 0$ if and only if $L_{\acute{e}t, \mathrm{mot}}^{\wedge}(\mathbb{1}/p) \wedge H\mathbb{Z} = 0$. Since $L_{\acute{e}t, \mathrm{mot}}^{\wedge}(\mathbb{1}/p) \wedge H\mathbb{Z} \simeq L_{\acute{e}t, \mathrm{mot}}^{\wedge}(H\mathbb{Z}/p)$. The forgetful functor $U: \operatorname{Mod}_{H\mathbb{Z}}(\operatorname{Sp}(\mathcal{Sm}_{S,\acute{e}t}^{\wedge})) \to \operatorname{Sp}(\mathcal{Sm}_{S,\acute{e}t}^{\wedge})$ commutes with $L_{\acute{e}t, \mathrm{mot}}^{\wedge}(\operatorname{in fact} L_{\acute{e}t, \mathrm{mot}}^{\wedge}(\mathbb{I}/p)$. The forgetful functor $U: \operatorname{Mod}_{H\mathbb{Z}}(\operatorname{Sp}(\mathcal{Sm}_{S,\acute{e}t}^{\wedge})) \to \operatorname{Sp}(\mathcal{Sm}_{S,\acute{e}t}^{\wedge})$ is $DA_{\acute{e}t}^{\wedge S^{-1}}(\mathbb{F}_p, \mathbb{Z})$ (use [Lur17a, Corollary 4.2.3.5]), and the motivic localization of $\operatorname{Mod}_{H\mathbb{Z}}(\operatorname{Sp}(\mathcal{Sm}_{S,\acute{e}t}^{\wedge}))$ is $DA_{\acute{e}t}^{\wedge S^{-1}}(\mathbb{F}_p, \mathbb{Z})$ (use [Lur18, Theorem 2.1.2.2]). Consequently we have reduced to proving that $DA_{\acute{e}t}^{\wedge S^{-1}}(\mathbb{F}_p, \mathbb{Z}/p) = *$, or equivalently that the unit of this symmetric monoidal category vanishes. This works using the standard argument, i.e. the fiber sequence $\mathbb{Z}/p \to \mathbb{G}_a \to \mathbb{G}_a$.

References

- [AGV20] Joseph Ayoub, Martin Gallauer, and Alberto Vezzani. The six-functor formalism for rigid analytic motives. arXiv preprint arXiv:2010.15004, 2020.
- [Ayo14] Joseph Ayoub. La réalisation étale et les opérations de grothendieck. Ann. Sci. Éc. Norm. Supér.(4), 47(1):1–145, 2014.
- [Bac18] Tom Bachmann. Motivic and real étale stable homotopy theory. Compositio Mathematica, 154(5):883–917, 2018. arXiv:1608.08855.
- [Bac20] Tom Bachmann. Rigidity in étale motivic stable homotopy theory. Accepted for publication in AGT, 2020. arXiv:1810.08028.
- [Dug14] Daniel Dugger. Coherence for invertible objects and multigraded homotopy rings. Algebr. Geom. Topol., 14(2):1055–1106, 2014.
- [ES19] Elden Elmanto and Jay Shah. Scheiderer motives and equivariant higher topos theory. arXiv preprint arXiv:1912.11557, 2019.
- [GAV72] Alexander Grothendieck, M Artin, and JL Verdier. Théorie des topos et cohomologie étale des schémas (SGA 4). Lecture Notes in Mathematics, 269, 1972.
- [Hoy15] Marc Hoyois. A quadratic refinement of the grothendieck–lefschetz–verdier trace formula. Algebraic & Geometric Topology, 14(6):3603–3658, 2015.
- [Hoy17] Marc Hoyois. The six operations in equivariant motivic homotopy theory. Advances in Mathematics, 305:197–279, 2017.
- [Lur17a] Jacob Lurie. Higher Algebra. 2017.
- Available at http://www.math.ias.edu/ lurie/. [Lur17b] Jacob Lurie. Higher Topos Theory. 2017.
- Available at http://www.math.ias.edu/ lurie/.
- [Lur18] Jacob Lurie. Spectral Algebraic Geometry. 2018.
- Available at http://www.math.ias.edu/ lurie/.

[Sch94] Claus Scheiderer. Real and Étale Cohomology, volume 1588 of Lecture Notes in Mathematics. Springer, Berlin, 1994.

MATHEMATISCHEN INSTITUT, LMU MUNICH, GERMANY *Email address*: tom.bachmann@zoho.com

[[]MV99] Fabien Morel and Vladimir Voevodsky. A¹-homotopy theory of schemes. Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 90(1):45–143, 1999.