COHERENT SIX OPERATIONS

MARC HOYOIS

I describe a symmetric monoidal (∞ , 2)-category Ξ such that a right-lax symmetric monoidal functor

$$D: \Xi \to Pr^L$$

encodes a system of coefficients on derived schemes with coherent six operations.

The objects of Ξ are derived schemes over an implicit base S. The ∞ -category of morphisms from X to Y in Ξ will be a subcategory of the ∞ -category $\mathbf{Corr}^{\mathcal{L}}((\mathrm{dSch}_{X\times Y})_{/K})^{\mathrm{op}}$ defined in [EHK⁺19, Appendix B]. A morphism from X to Y is a span

where g is locally of finite type and $\xi \in K(Z)$. One composes such spans by taking pullbacks of schemes and external sums of K-theory elements. A morphism $(Z, \xi) \to (W, \eta)$ between such spans is a span from Z to W over $X \times Y$:

where p is proper and q is quasi-smooth, together with an isomorphism $p^*(\xi) \simeq q^*(\eta) + \mathcal{L}_q$ in K(T). The symmetric monoidal structure is given by the product of schemes and the external sum of K-theory elements.

Definition 1. A coherent formalism of six operations is a right-lax symmetric monoidal functor

$$D: \Xi \to Pr^L$$

Claim 2. This encodes in particular the following data for $f: Y \to X$ and $\xi \in K(X)$:

- (i) the adjunction (f^*, f_*)
- (ii) the adjunction (f_1, f_1) for f locally of finite type
- (iii) the endofunctor Σ^{ξ} of D(X)
- (iv) the base change isomorphism $g^*f_! \simeq f'_!g'^*$ for any $g: X' \to X$
- (v) the isomorphisms $f^*\Sigma^{\xi} \simeq \Sigma^{f^*\xi} f^*$ and $f_!\Sigma^{f^*\xi} \simeq \Sigma^{\xi} f_!$
- (vi) the natural transformation $\mathfrak{s}_f \colon f_! \to f_*$ for f locally of finite type and separated
- (vii) the natural transformation $\mathfrak{p}_f \colon \Sigma^{\mathcal{L}_f} f^* \to f^!$ for f quasi-smooth
- (viii) the fact that \mathfrak{s}_f is an isomorphism when f is proper ($\Leftrightarrow f$ and Δ_f are proper)

Date: March 19, 2020.

MARC HOYOIS

- (ix) the fact that \mathfrak{p}_f is an isomorphism when f is smooth (\Leftrightarrow f and Δ_f are quasi-smooth)
- (x) the fact that f_* and $f_!$ are fully faithful when f is an open immersion
- (xi) the presentably symmetric monoidal structure on D(X)
- (xii) the symmetric monoidal structure on f^*
- (xiii) the D(X)-linear structure on $f_!$
- (xiv) the D(X)-linear structure on Σ^{ξ}
- (xv) the D(X)-linear structure on $\mathfrak{s}_f \colon f_! \to f_*$
- (xvi) the D(X)-linear structure on $\mathfrak{p}_f \colon \Sigma^{\mathcal{L}_f} f^* \to f^!$
- (xvii) the symmetric monoidal transformation $K \to D, \ \xi \mapsto \Sigma^{\xi} \mathbf{1}$

Proof. (i) The functor f^* is the image of the span

(ii) The functor $f_!$ is the image of the span

(iii) The functor Σ^{ξ} is the image of the span

(iv) The base change isomorphism comes from the 2-span

(v) The isomorphism $f^*\Sigma^\xi\simeq\Sigma^{f^*\xi}f^*$ comes from the 2-span

and similarly for $f_! \Sigma^{f^*\xi} \simeq \Sigma^{\xi} f_!$.

(vi) The adjoint $f^*f_! \to \mathrm{id}$ of \mathfrak{s}_f is the image of the ascending 2-morphism

using that Δ_f is proper.

(vii) The adjoint $f_! \Sigma^{\mathcal{L}_f} f^* \to \mathrm{id}$ of \mathfrak{p}_f is the image of the ascending 2-morphism

using that f is quasi-smooth.

(viii) There is a transformation $id \rightarrow f_! f^*$ induced by the descending 2-morphism

using that f is proper. This 2-morphism and that of (vi) are the unit and counit of an adjunction in Ξ .

(ix) There is a transformation $\mathrm{id} \to \Sigma^{\mathcal{L}_f} f^* f_!$ induced by the descending 2-morphism

MARC HOYOIS

using that Δ_f is quasi-smooth. This 2-morphism and that of (vii) are the unit and counit of an adjunction in Ξ .

(x) This follows from the fact that the 2-morphism from (ix) is an isomorphism when f is an open immersion.

(xi) Every $X\in \Xi$ has a structure of commutative algebra, with multiplication $X^{\otimes I} \to X$ given by

(xii) X \xleftarrow{f} (Y,0) = Y has a structure of morphism of commutative algebras in Ξ .

(xiii) $Y = (Y, 0) \xrightarrow{f} X$ has a structure of morphism of X-modules in Ξ .

(xiv) $X = (X, \xi) = X$ has a structure of morphism of X-modules in Ξ .

(xv) The 2-morphism from (vi) has a structure of 2-morphism of X-modules in Ξ .

(xvi) The 2-morphism from (vii) has a structure of 2-morphism of X-modules in Ξ .

(xvii) There is a morphism of commutative monoids $K \to Maps_{\Xi}(1, -)$ sending $\xi \in K(X)$ to

References

[EHK⁺19] E. Elmanto, M. Hoyois, A. A. Khan, V. Sosnilo, and M. Yakerson, Modules over algebraic cobordism, 2019, arXiv:1908.02162v1