SEQUENTIAL VS. SYMMETRIC SPECTRA

MARC HOYOIS

Let \mathcal{C} be a presentably symmetric monoidal ∞ -category and let $X \in \mathcal{C}$. Following [AI23, Section 1], we write $\operatorname{Tel}_X(\mathcal{C})$ for the ∞ -category of sequential X-spectra and $\operatorname{Sp}_X(\mathcal{C})$ for the ∞ -category of symmetric X-spectra. The former is a \mathcal{C} -module while the latter is a commutative \mathcal{C} -algebra in $\mathcal{Pr}^{\mathrm{L}}$.

There is a conservative forgetful functor $\operatorname{Sp}_X(\mathcal{C}) \to \operatorname{Tel}_X(\mathcal{C})$ in $\operatorname{Pr}^{\mathbb{R}}$, which is well known to be an isomorphism when the cyclic permutation of $X^{\otimes n}$ is the identity for some $n \geq 2$, but not in general. The following rather surprising result, which we learned from Jacob Lurie, shows that when \mathcal{C} is stable, being symmetric is merely a property of a sequential spectrum:

Proposition 1 (Lurie). Let \mathcal{C} be a stable presentably symmetric monoidal ∞ -category and let $X \in \mathcal{C}$. Then the forgetful functor $\operatorname{Sp}_X(\mathcal{C}) \to \operatorname{Tel}_X(\mathcal{C})$ is fully faithful. Its essential image is $\operatorname{Tel}_X(\mathcal{C}')$, where \mathcal{C}' is the full subcategory of \mathcal{C} consisting of all objects Y such that the action of a 3-cycle on the internal mapping object $\operatorname{Hom}(X^{\otimes 5}, Y)$ is homotopic to the identity.

Proof. Let A be a pointed connected anima such that $\pi_1(A)$ is a perfect group and let $a: A \to A^+$ be Quillen's plus construction. For a local system $L: A \to C$, the following are equivalent:

- (i) L factors through the epimorphism a;
- (ii) L induces the trivial map on π_1 ;
- (iii) $L(*) \rightarrow \operatorname{colim}(L|\operatorname{fib}(a))$ is an isomorphism;
- (iv) the unit map $L \to a^* a_! L$ is an isomorphism;
- (v) $\lim(L|\operatorname{fib}(a)) \to L(*)$ is an isomorphism;
- (vi) the counit map $a^*a_*L \to L$ is an isomorphism.

Since $\pi_1(A)$ is perfect, the equivalence (i) \Leftrightarrow (ii) is the universal property of the plus construction. The implications (iii) \Leftrightarrow (iv), (v) \Leftrightarrow (vi), (iv) \Rightarrow (i), and (vi) \Rightarrow (i) are obvious. Finally, if *L* factors through A^+ , then the maps $L(*) \rightarrow \operatorname{colim}(L|\operatorname{fib}(a)) \simeq \operatorname{fib}(a) \otimes L(*)$ and $L(*)^{\operatorname{fib}(a)} \simeq \operatorname{lim}(L|\operatorname{fib}(a)) \rightarrow L(*)$ are isomorphisms since fib(*a*) is acyclic and \mathcal{C} is stable.

We now apply this with A the delooping of the alternating group A_5 , which is perfect, and L the action of A_5 on $X^{\otimes 5}$. Since A_5 is generated by 3-cycles, the equivalence (ii) \Leftrightarrow (v) applied to $\operatorname{Hom}(-,Y) \circ L$ shows that \mathcal{C}' is exactly the symmetric monoidal left Bousfield localization of \mathcal{C} at the map $L(*) \to$ $\operatorname{colim}(L|\operatorname{fib}(a))$. This map is an isomorphism if X is invertible, by the implication (ii) \Rightarrow (iii). Hence, the functor $\operatorname{Sp}_X(\mathcal{C}) \to \operatorname{Sp}_X(\mathcal{C}')$ in $\operatorname{CAlg}(\operatorname{Pr}^L)$ is an isomorphism by comparison of universal properties. By (iii) \Rightarrow (ii), the cyclic permutation on $X^{\otimes 5}$ becomes the identity in \mathcal{C}' , so that the functor $\operatorname{Tel}_X(\mathcal{C}') \to$ $\operatorname{Sp}_X(\mathcal{C}')$ in Pr^L is an isomorphism. The following commutative square in Pr^R completes the proof:

$$\begin{array}{ccc} \operatorname{Sp}_{X}(\mathcal{C}') & \stackrel{\sim}{\longrightarrow} & \operatorname{Tel}_{X}(\mathcal{C}') \\ & \downarrow & & \downarrow \\ & & & \downarrow \\ & & & \operatorname{Sp}_{X}(\mathcal{C}) & \longrightarrow & \operatorname{Tel}_{X}(\mathcal{C}). \end{array}$$

References

[AI23] T. Annala and R. Iwasa, Motivic spectra and universality of K-theory, 2023, arXiv:2204.03434

Date: March 8, 2024.